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Phase behavior of aligned dipolar hard spheres: Integral equations and density functional results
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Using reference hypernetted chain integral equations, we investigate the phase behavior of a system of
dipolar hard spheres withperfectorientational order. At low densities, the correlation functions show a strong
tendency to the formation of head-to-tail chains. The occurrence of a condensation of the chains, as suggested
by a recent simulation, is critically discussed. At higher densities the structure of the liquid phase already
reflects well defined positions of the chains relative to each other, similar to a body-centered-tetragonal
structure. Minimizing a density functional of the grand canonical free energy which is based on the liquid
correlation functions, we calculate the coexistence lines at freezing. Interestingly, the system freezes at much
lower temperatures than the corresponding isotropic fluid.@S1063-651X~99!11809-9#

PACS number~s!: 61.25.Em, 64.70.Dv
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I. INTRODUCTION

In recent years, the phase behavior of simple dipo
model fluids has attracted much attention. Besides the
that dipolar interactions are nearly omnipresent in molecu
liquids, there are also several artificial systems where
dipolar interaction plays a dominant role. Most important a
the so-called ferrofluids, which are stable colloidal susp
sions of ferromagnetic particles, dissolved in a carrier liq
such as water or oil@1–3#.

Besides their potential applicability, dipolar fluids are al
of general theoretical interest related to the peculiarities
the dipolar interaction: its long range and its strong anis
ropy, which is expressed by the fact that the configurat
with lowest energy is a nose-tail alignment of the dipo
moments, while two dipoles lying side by side prefer to po
antiparallel. These properties of the dipolar interaction ma
the investigation of dipolar model fluids—both by theory a
by simulation—so complicated that up to now even t
phase diagram of the simplest dipolar model fluids, nam
repulsive spheres with an embedded permanent point dip
is not completely understood. Most work has been done
an isotropicsystem of dipolar spheres. Here, one of the m
interesting insights was that orientationally disordered di
lar spheres can overcome the frustration, produced by
anisotropy of the dipolar interaction and can spontaneou
form ferroelectricphases, which are characterized by a lon
ranged parallel order of the dipole moments. This was fi
detected in a simulation of dipolar soft spheres@4,5# and later
also in simulations of dipolar hard spheres@6–8# and the
so-called Stockmayer fluid@9#, where the dipolar potential is
supplemented by an additional isotropic Lennard-Jones
traction. Moreover, those simulations where a very bro
density regime was investigated@4–8# suggest that the ferro
electric order is not necessarily accomplished by a tran
tional order, but can also be realized in afluid state. Various
theoretical studies, including density functional calculatio
@10–13#, integral equation approaches@14,13#, and more
phenomenological theories@15,16#, seem to confirm the ex
PRE 601063-651X/99/60~3!/3183~16!/$15.00
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istence of a ferroelectric fluid. However, the fact that the
investigations exclude crystalline states has motivated s
further density functional studies@17–19# where well-known
descriptions for the liquid-solid transition of simple fluid
@20# have been generalized to the dipolar case. It has tur
out that the results not only quantitatively but also quali
tively strongly depend on the approximate treatment of
interparticle correlations: Substituting them by their low
density limit, it was shown@17# that the ferroelectric fluid is
indeed a stable phase in a small density regime. On the o
hand, using a free energy ansatz which is based on the
relations of the isotropic dense liquid~calculated by refer-
ence hypernetted chain integral equations!, the authors have
found that the ferroelectric fluid is only a metastable pha
@18,19#: cooling the dense isotropic liquid, the syste
freezes into a ferroelectric solid,beforethe temperatures ar
low enough for the transition into a ferroelectric liquid. Ac
cording to our results, the ferroelectric solid has a bod
centered-tetragonal~bct! structure@18,19#. A polarized bct
crystal can be viewed as a system of polarized chains, wh
nearest-neighbor chains are displaced in the direction of
polarization, so that a sphere in one chain sits between
spheres of the neighboring chain. The occurrence of this
ticular lattice structure is not surprising in the light of som
ground-state calculations concerning a system ofperfectly
aligned dipolar spheres@21,22#. The latter represents th
simplest model for an electrorheological fluid, where the
pole moments are induced by an external field~see, e.g.,
Refs. @23,24#!. At sufficiently strong fields, the spherelik
particles in an electrorheological fluid form thick columns
which the structure is solidlike with the symmetry of a bod
centered-tetragonal~bct! crystal@25#. That this lattice is pre-
ferred energetically with respect to other lattice structu
was explained first by Tao and Sun@21#: they showed that,
due to the discrete nature of the dipole density aroun
polarized chain, two infinitely long polarized chains feel
mutual short-ranged attraction, if they are shifted relative
each other by half a particle diameter. Because of this att
tion, the bct structure is indeed the structure with thelowest
3183 © 1999 The American Physical Society
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energy, if only polarized systems are considered@22#. There-
fore, our density functional result@18,19# that the low-
temperature ferroelectric solid phase has a bct structure
principle satisfying.

However, the fact that our ferroelectric bct solid com
pletely preempts the ferroelectricfluid phase contradicts th
simulations@5,7# and therefore shows that the density fun
tional theory has to be improved. A hint towards a promis
improvement is given by simulation results for the tw
particle correlation functions in the ferroelectric fluid@4,5#:
here one already sees the development of vertically displa
chains, which reflects somewhat the structure of the bct s
occurring at high densities. We expect that this arrangem
of the spheres in the ferroelectric fluid ‘‘‘helps’’ the latter
be stable against the solid in a small density regime. We
suspect here a relation to the failure of our density functio
theory to find a stable ordered liquid@18,19#: there we have
approximated both the free energy of the ferroelectric liq
and the ferroelectric solid using correlation functions of t
isotropic liquid, where the effects described above are v
weak @13#.

This was one of the motivations for our present stu
where we investigate—as a first step—the structural feat
and the freezing of dipolar hard spheres withperfect ferro-
electric order. As in our former work about the freezing o
isotropic dipolar spheres@18,19#, our investigation is based
on the two-particle correlation functions of the system, c
culated by integral equations in the reference hyperne
chain~RHNC! approximation. In comparison to the isotrop
case, the investigation of the perfectly ordered system is
complicated, since the orientational degrees of freedom
zero. The formal way to solve the integral equations for s
tems with perfect orientational order has already been gi
in 1988 by Caillolet al. @26#, as a specialization of the cor
responding equations for isotropic systems@27,28#. Based on
the RHNC correlations we then construct an approxim
density functional for the difference between the grand
nonical free energies between the fully oriented solid and
fully oriented liquid. By minimization we calculate the co
existence points at freezing, for which, to our knowledge,
theoretical results are available up to now. It is clear that
study of the perfectly ordered system cannot contribute
rectly to the phase diagram of isotropic dipolar spher
However, we want to show here that due to the correlati
in the dense ordered liquid, it freezes at much lower temp
tures than the corresponding isotropic system.

Apart from the freezing and the structural features of
polarized dense dipolar hard sphere fluid, we will also inv
tigate the low-density regime. The motivation was a rec
simulation result for an aligned dipolar soft sphere flu
~which differs from the system considered here only in
description of the short-ranged repulsion of the spheres!: us-
ing Gibbs-ensemble Monte Carlo simulations, Stevens
Grest@29,30# showed that, at very low densities, a vaporli
and a liquidlike phase seem to coexist. On one hand,
seems not so surprising, since the Boltzmann weighted a
age of the dipolar interaction between two polarized sphe
is attractive@31#. On the other hand, there is a strong arg
ment indicating that such two-particle considerations are
sufficient: already in 1970 de Gennes and Pincus@31# pre-
dicted that in a dilute system of dipolar spheres under
in
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influence of a strong field, the tendency to minimize the e
ergy should lead to the formation of longchains in field
direction, where the spheres in the chains have contact
deed, in the simulation of Stevens and Grest@30,29#, both the
dilute and the denser liquid phases were characterized
pronounced chain formation. This fact raises the question
whether the chains mutually attract and if in this way a liqu
phase is formed. The ground-state results@21# for fully po-
larized chains make such an attraction not very likely:
order to feel a mutual attraction, the chains~i! have to be
very long, and~ii ! have to arrange themselves in a very sp
cial manner~namely similar to the bct phase!. But even then
the mutual attraction is very short-ranged@21#, so that an
attraction under gaslike conditions seems questionable.
nature of the driving force of the condensation is theref
far from being clear. Teixeiraet al. @32# have attempted to
investigate the condensation by a strong idealization:
chains are modeled by alignedrods with equispaced dipoles
along the long axes of the rods. They@32# constructed a
mean-field-like free energy of these systems, where the
polar interactions are only taken into account by a term r
resenting the electrostatic energy density in the system
polarized rods. Since this term is negative and its abso
value increases~at fixed temperature! with increasing den-
sity, it acts as anattractive part of the free energy, so tha
indeed a condensation of the dipolar rods is found@32#. It is,
however, clear that this approach completely neglects
anisotropic short-ranged correlations. That these might
crucial can be seen from the example of an isotropic dipo
hard sphere fluid: here, the energetically favored format
of wormlike chains~which is visible in the behavior of the
correlation functions@33,13# and can also be observed d
rectly in simulations@34,35,30,8#! is so pronounced that pre
viously expected gas-liquid condensation is completely p
empted@34#. In view of the fact that, apart from the work o
Teixeiraet al. @32#, there are up to now no theoretical studi
of the possible condensation of aligned dipolar sphere
careful study on the basis of the RHNC correlation functio
seems to be justified. Due to our positive experience w
isotropic dipolar spheres@13#, we use a similar method here
from the RHNC correlations, we calculate fluctuatio
which—as will be shown—are strongly growing when low
ering the temperature. In the whole low-density regime,
fluctuations point to the expected chain formation. Howev
investigating directly the pressure and the chemical poten
~for which we give explicit formulas here!, no coexistence
points are found. We finally show that vapor-liquid coexis
ence can be found with the RHNC method if the pure dipo
interaction is supplemented by an additional Lennard-Jo
attraction, i.e., when an aligned Stockmayer fluid is cons
ered.

The paper is organized as follows. In Sec. II we sketch
basic steps towards the solution of the RHNC integral eq
tions. Section III A summarizes our method to investiga
and interpret fluctuations which occur upon lowering t
temperature. The fluctuations at low densities and the qu
tion of condensation are discussed in Sec. III B, and S
III C contains the high-density behavior. In the subsequ
section ~Sec. IV A!, we briefly describe the density func
tional theory for the calculation of the coexistence points
freezing. Section IV B contains the numerical results for t
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high-density region of the phase diagram of fully orient
dipolar hard spheres. Finally, we give in Sec. V a short sum-
mary and discussion.

II. THE MODEL AND THE CALCULATION
OF CORRELATION FUNCTIONS

Our model systems consist of hard spheres of diametes
with an embedded point dipole of strengthm at their center.
We assume that the system hasperfectorientational order in
the sense that all dipole moments point in the positivz
direction~described by the unit vectorẑ); orientational fluc-
tuations with respect to this director are not permitted. In t
case the pair potential of two particles 1 and 2, located ar1
and r2, is given by

u~1,2!5H ` :r 12,s

udd~r12! :r 12.s,
~1!

wherer 125ur12u[ur12r2u and

udd~r12!5
m2

r 12
3 @123~cosu12!

2#522
m2

r 12
3

P2~cosu12!.

~2!

Here,u12 describes the orientation ofr12 with respect to the
ẑ, andP2(cosu12) is the usual second-order Legendre po
nomial.

The equations for the calculation of correlation functio
in the fully aligned dipolar fluid follow from a specializatio
of the corresponding equations for the isotropic case. At fi
the one-particle density in the homogeneous but orientat
ally ordered system can formally be written as

r~1!5
r

2p
b~cosu! with b~cosu!5(

l 50

`
2l 11

2
Pl~cosu!,

~3!

wherer is the number density. The form ofb(cosu) reflects
that the orientation of a dipole is not a true degree of fr
dom: as follows from the completeness relation for spher
harmonics@36#, b(cosu) in Eq. ~3! is a d function, i.e.,
b(cosu)5d(cosu21). Consequently, all orientational orde
parameters, defined in the usual way@37# by ^P̃l&
ª*21

1 d cosu Pl(cosu)b(cosu), have identically the value 1
as one expects in the case ofperfectorder. In particular, the
polarization is given byP5P ẑ, whereP5rm^cosu&5rm.

The whole structural information about the system is c
tained in the total and direct correlation functionsh(1,2) and
c(1,2), which depend here only onr12. The correlation func-
tions are calculated by an iterative solution of the Ornste
Zernike ~OZ! equation@38#

h~r12!5c~r12!1rE dr3h~r13!c~r32! ~4!

combined with the closure relation

c~r12!52bu~r12!1h~r12!1B~r12!2 ln@11h~r12!#,
~5!
s

-

t,
n-

-
l

-

-

whereb51/kB T, and B(r12) is the so-called Bridge func
tion. In this work we use the reference hypernetted ch
~RHNC! approximation@39#, whereB(r12) is defined by the
Verlet-Weiss correlation functions of the underlying ha
sphere fluid@40#,

B~r12!→BHS~r 12!5 ln gHS~r 12!2hHS~r 12!1cHS~r 12!.
~6!

The Bridge functions are evaluated at the density of the fl
under consideration.

In the following we sketch the main steps towards t
numerical solution of the integral equations. At first, the tw
particle functions are expanded in an appropriate an
dependent basis set. Due to the cylindrical symmetry w
respect to the director, all functions ofr12 can be expanded in
Legendre polynomials:

f ~r12!5 f ~r 12,u12!5(
l 50

l max

f l~r 12!Pl~cosu12!

with f l~r 12!5
2l 11

2 E
21

1

d~cosu12! f ~r12!Pl~cosu12!.

~7!

Since the pair potential@cf. Eq. ~2!# and therefore also the
correlation functions do not depend on the sign ofr12, only
even values ofl need to be considered. We terminate t
expansion~7! at l max58. In order to transform the closur
relation~5! into equations for the coefficientsf l(r 12), we use
a trick, introduced by Fries and Patey@27# and Caillol @28#
for the treatment of anisotropic dipolar system: a differen-
tiation of the closure avoids any approximate expansion
the logarithm in Eq. ~5!. Noting that Pl(cosu)
5A4p/2l 11Yl0(v), we can use the angular operatorL 1

with L 1Yl0(v)5Al ( l 11)Yl1(v) to get

cl~r 12!5w l~r 12!1(
m

(
n

hm~r 12!A~m,n,l !

3@hn~r 12!2cn~r 12!1wn~r 12!#, ~8!

where

w l~r 12!52bul~r 12!1Bl~r 12!. ~9!

For the present calculation,ul(r 12)522m2/r 12
3 d l ,2 and

Bl(r 12)5BHS(r 12)d l ,0 . Finally, the constantA in Eq. ~8! is
given by

A~m,n,l !5An~n11!

l ~ l 11!
C~mnl,000!C~mnl,011!, ~10!

where theC( ) are Clebsch-Gordan coefficients. Due to t
form of the denominator inA(m,n,l ), the relations~8! and
~10! allow the calculation of thecl(r 12) only for lÞ0. For
l 50 we differentiate the closure~5! with respect to the par-
ticle distancer 12, which leads to a simple differential equa
tion:
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]

]r 12
cl 50~r 12!5

]

]r 12
w l 50~r 12!11(

l 50

l max 1

2l 11
hl~r 12!

]

]r 12

3@hl~r 12!2cl~r 12!1w l~r 12!#. ~11!

The OZ equation~4! is most comfortably treated in the Fou
rier space:

h̃~k!5 c̃~k!1r h̃~k! c̃~k!. ~12!

Here, f̃ (k)5*dr12exp@ik•r12# f (r12) with f 5h or c. We ex-
pand these functions as

f̃ ~k!5 f̃ ~k,uk!5(
l 50

l max

f̃ l~k!Pl~cosuk!, ~13!

whereuk is the angle betweenk and ẑ, and the coefficients
are Hankel transforms of the corresponding spatial functio

f̃ l~k!54p i lE
0

`

dr12 r 12
2 j l~kr12! f l~r 12!. ~14!

Here, j l(kr12) is a spherical Bessel functions@36# of order l,
and i 5A21. With Eq. ~13!, the OZ relation~12! becomes

h̃l~k!2 c̃l~k!5r(
m,n

h̃m~k!c̃n~k!@C~mnl,000!#2. ~15!

Equations~15!, ~8!, and~11! can now be solved numericall
by an iteration procedure. All of the described numeri
steps are specializations of the more involved formalism
the isotropic dipolar fluid, which is extensively described
Refs.@13,33,41#.

III. CORRELATIONS AND FLUCTUATIONS
IN THE LIQUID PHASE

We describe the state of the ordered dipolar hard sph
fluid by the reduced densityr* 5rs3 and the reduced tem
peratureT* 5kBTs3/m2. It is typical for the RHNC integral
equations that they cannot be solved for all parameters,
the same occurs here: lowering the temperature at con
density, we find a temperatureTS* (r* ) below which the nu-
merical solution breaks down. These temperatures defin
line in theT* 2r* diagram which we present in Fig. 1. Th
hill at low densities is somewhat reminiscent of the spino
of a vapor-liquid transition, and indeed, in a Gibbs ensem
Monte Carlo ~GEMC! simulation of the closely related
~aligned! dipolar soft sphere fluid@29#, coexistence of a va
porlike and a liquidlike phase has been found@29#. In Fig. 1,
the critical point from the simulation@29# is denoted by the
black box. That this point lies far below our nonsolution lin
might seem to be consistent with the viewpoint of some
thors that the nonsolution line, calculated by integral eq
tion theory, is an intrinsic feature of the integral equatio
themselves and therefore does not necessarily have a p
cal origin @42–44#. However, our experience for the case
isotropic dipolar fluids @13# and other complex system
@45,41# shows that near such nonsolution lines, some
sponse functions, i.e., mean squared density fluctuati
which can be calculated from the RHNC correlations, b
s:

l
r

re

nd
nt

a

l
le

-
-

s
si-

-
s,
-

come very large. Moreover, the character of the strongly
creasing fluctuations indicates the structure of the co
sponding low-temperature state@13,45,41#. Due to this
positive experience and in order to understand what is go
on in the perfectly ordered system, we apply here a sim
fluctuation analysis. This is formally described below. T
fluctuation analysis will enable us to distinguish a low- and
high-density regime in Fig. 1. These regions are discus
separately in Secs. III B and III C.

A. Fluctuations and stability

We start with the condition by which the stability of
given equilibrium state, characterized by the one-parti
densityreq(1), can bechecked@46,41#. The requirement is
that the quantity

bdVª

b

2E d1E d2
d2V

dr~1!dr~2!
U

eq

dr~1!dr~2!

5
1

2E d1E d2F d~1,2!

req~1!
2c~1,2!U

eq
Gdr~1!dr~2!

~16!

must be positive for arbitrary~but small! density fluctuations
dr(1)5r(1)2req(1). Up tosecond order,dV is the change
in the grand canonical potentialV induced by the density
variations.

Equation~16! holds for any one-component fluid. In orde
to apply it to the fully aligned dipolar fluid, we use the e
pression~3! for the undisturbed densityreq(1) and make the
following ansatz for the fluctuations:

dr~1!5dr~r !
1

2p
b~cosu! ~17!

with b(cosu) from Eq. ~3!. This ansatz reflects that the or
entational order cannot be disturbed, since the orientatio
degrees of freedom are zero. Only fluctuations in the tra
lational degrees of freedom are possible. A Fourier transfo
then reduces Eq.~16! to

FIG. 1. Nonsolution regime for the perfectly ordered dipo
hard sphere fluid (T* 5kBTs3/m2, r* 5rs3). Also shown is the
critical point of the perfectly ordered dipolar soft sphere~DSS!
system due to a GEMC simulation@29#.
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bdV5
1

2V (
k

dr̄~k!M̃ ~k!dr̄* ~k!, ~18!

where V is the ~fixed! volume of the system anddr̄(k)
5dr(k)/Ar (r is the number density!. The coupling coef-
ficients of the density fluctuations,M̃ (k), are given by

M̃ ~k!512r c̃~k!512r(
l

c̃l~k!Pl~cosuk!. ~19!

Equation~19! shows the way of finding the stability limit o
the fluid phase: lowering the temperature at constant den
we investigate the behavior ofM̃ (k). In the stable system
M̃ (k) has to be positive for each wave numberk5uku and
also for each direction ofk relative toẑ. The stability limit is
therefore reached if at least one of the quantitiesM̃ (k) goes
to zero.

We now assume that thoseM̃ (k) which become smalles
at the stability limit give a hint to the phase behaviorbelow

the instability line. The physical meaning of theM̃ (k) be-
comes clear from the fact that they are inverse to the m
quadratic density fluctuations@41#:

1

V ^dr̄~k!dr̄* ~k!&5@M̃ ~k!#21511rh̃~k!5:S~k!.

~20!

The latter relation betweenM̃ (k) andh̃(k) follows from the
OZ equation@Eq. ~12!#. In order to use a common languag
we have also introduced the structure factorS(k) in Eq. ~20!.
In a simple~isotropic! fluid where S(k)5S(k), the strong
increase of the main peak inS(k) at kÞ0 usually indicates
the development of three-dimensional translational ord
i.e., a crystallization. In our polarized system, the struct
factor also depends on the direction ofk, meaning that also
the development of an order, which is restricted to a spec
direction relative toẑ, can be detected. The correspondi
wave numberkmax is a measure for the dominating wav
lengthl in the real space, i.e.,l;kmax/2p. A related situa-
tion occurs, for example, in liquid crystal model system
close to the nematic-to-smectic-A transition @47#: there
S(k'z) is essentially structureless whileS(kiz) exhibits a
strongly increasing peak at a wave number which co
sponds to the period of the layers in the smectic-A phase.

In order to get more detailed information, we will ofte
relate the behavior ofS(k)5S(k,u) to that of the pair cor-
relation functiong(r 12,u)511h(r 12,u). It has to be noted
that, in general,S(k) in the ordered system cannot be view
as a Fourier transform ofg(r12): S(k) contains a sum of the
coefficientsh̃l(k) where each coefficient is a Hankel tran
form @cf. Eq. ~14!# of the correspondinghl(r 12), but the or-
der of the involved Bessel functions depends onl. However,
at the physically interesting wave numbers, namelyk
;2p/s, the functionsi l j l become very similar@36# so that
in this caseS(k,u) can indeed be viewed as the Fouri
transform of g(r 12,u) @48# ~apart from an unimportan
d-function term!.
ty,

n

r,
e

c

-

In the context of a possible vapor-liquid condensation
the system, the relevant quantity is the compressibilityxT ,
measuring homogeneous fluctuations of the number den
In a simple isotropic fluid, the reduced isothermal compre
ibility bxT /r is given byS(k50)5S(k50). However, in a
completely ordereddipolar system this long-wavelength
limit is not unique@26# sinceS(k) depends on the direction
of the wave vector also in the limitk→0. To see this, we
note the relation~20! betweenS(k) and c̃(k) and make the
usual assumption@49#

c~r12!→2bu~r12!, r 12→`, ~21!

which means that@cf. Eq. ~2!# the coefficient withl 52 be-
haves like

cl 52~r 12!→2bm2/r 12
3 , r 12→`. ~22!

The higher coefficients remain short-ranged. Using the pr
erties of the Hankel transform@cf. Eq. ~14!# it can be shown
that, therefore@26,50#,

c̃l>4~k50!50, ~23!

c̃l 52~k50!528pbm2/3.

Equation ~23! together with Eq. ~13! explains why
S(k→0) depends onuk . In Ref. @26# it was shown via the
relation between pressure and compressibility that the la
is given by the long-wavelength limit of the ‘‘perpendicu
lar’’ structure factor:

b

r
xT5 lim

k→0,k'z
S~k!5SS k50,u5

p

2 D
5F M̃ S k50,u5

p

2 D G21

. ~24!

In Appendix A we give an alternative derivation of this r
sult, starting directly from Eq.~16!.

The investigation of the system with the methods d
scribed here shows that the nonsolution line in Fig. 1 is
deed an estimate for the instability line of the homogene
unperturbed system: approaching this line from above, s
eral M̃ (k) become very small, i.e., several fluctuations te
to diverge.

B. Low densities and the question of condensation

1. Fluctuations

Up to the densityr* ;0.45, which corresponds roughly t
the end of the hill in the instability line~cf. Fig. 1!, the
steepest descent upon lowering the temperature occur
M̃ (k50,u5p/2). Following Eq. ~24!, this means that the
strongest fluctuations are those of the number density, m
sured by the compressibility. This points~at least on first
sight! to a vapor-liquid transition in the system. In Fig. 2 w
show the compressibilityxT* 5bxT /r at two typical densi-
ties, namely atr* 50.02 andr* 50.2 ~marked by arrows in
Fig. 1!. Also shown isxT* at r* 50.5, which is a ‘‘change-
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3188 PRE 60SABINE KLAPP AND FRANK FORSTMANN
over density’’ in the sense that here already periodic fluct
tions dominate, but the compressibility still shows a striki
behavior.

Although the compressibility strongly increases at all de
sities shown in Fig. 2, a ‘‘diverging behavior’’~which one
expects at a vapor-liquid transition! seems to occur only a
the right side of the hill in the instability line (r* 50.2
20.5). At the low-density side (r* 50.02), however, we
observe another strongly increasing fluctuation with com
rable strength: as visible from Fig. 3, the structure factor iẑ
direction (u50) has a peak atks;7 which grows strongly
for T* →TS* . The fact thatS(k) has no pronounced structur
in the other directions ofk means the onset of one
dimensional order alongẑ with a period of about one spher
diameter, i.e., the formation of aligned chains where
spheres tend to have contact. This is qualitatively consis
with the simulations of Stevens and Grest@29,30#. The asso-
ciation into chains is also seen in the behavior ofg(r12) ~cf.
Fig. 4!: here we see a sharp increase of the contact value
the second peak ofg(r 12,u50). The contact value atu50
is much larger than in other directions, for example atu
5p/3. Finally, the shape ofg(r 12,u5p/2), which describes
the structure in the equitorial plane of a sphere, shows tha
association in this direction is avoided, as one expects du
energetic reasons. The chainlike clusters seem to be
separated.

FIG. 2. Reduced isothermal compressibility (xT* 5bxT /r) vs
reduced inverse temperature for three different~low! densities.

FIG. 3. Angular-dependent structure factor for specific values
u at r* 50.02 andT* 50.357. The inset shows the maximum of th
main peak inS(k,u50) ~located atksmax'7.0) vs reduced inverse
temperature.
-
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Not only at the low-density side of the hill in our insta
bility line, but also for liquid densities the strong increase
the main peak inS(k,u50) points to an association of th
particles into chains along theẑ direction ~cf. Fig. 5 for r*
50.2). However, a difference in the low-density side occu
insofar as now alsoS(k,u5p/3) has its main peak atkÞ0,
and that this peak, though smaller than that foru50, in-
creases remarkably forT* →TS* . Correspondingly,g(r12)
shows an interesting structure also in the directionu5p/3.
This can be seen from the strong increase of the con
value of this function in Fig. 6 (r* 50.2). We understand the
development of order in this particular direction relative toẑ
as a consequence of increasing chain interactions: if
straight chains of polarized spheres are lying exactly side
side, both of them act as a strongly elongated dipole, so
their interaction is repulsive~irrespective of the chain
length!. It is much more favorable for the chains, if they a
so arranged that the spheres in one chain are displaced~along
the director! by half a particle diameter with respect to th
spheres of the neighboring chains. Then the mutual repul
is strongly lowered. When the chains are displaced as
scribed above, the angle between the dipole in a spher
one chain and the connecting vector to the neighbor
sphere of the other chain is given byu5p/3. This fact ex-

f

FIG. 4. Angular-dependent pair correlation function for spec
values ofu at r* 50.02 andT* 50.357. The insets show the deve
opment of the contact value and the second peak ing(r 12,u50) vs
reduced inverse temperature.

FIG. 5. Same as Fig. 3, but forr* 50.2 andT* 50.358. The
rightmost inset shows additionally the maximum of the main pe
in S(k,u5p/3) vs reduced inverse temperature. The maxima
located atksmax'6.9 (u50) andksmax'6.0 (u5p/3).
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PRE 60 3189PHASE BEHAVIOR OF ALIGNED DIPOLAR HARD . . .
plains the increase ofg(r 125s,u5p/3) in Fig. 6 and thus
the increase of the main peak inS(k,p/3). We note that the
arrangement described here corresponds precisely to th
pectation for a body-centered-tetragonal~bct! solid phase, for
which the unit cell is presented in Fig. 7. The comparis
with the bct unit cell also explains the occurrence of t
small positive peak ing(r 12,p/2) at r 12'1.3s, resulting
from the next-nearest-neighbor chain. However, due to
small density this structural feature is only weak.

2. Condensation?

From the fluctuations we can infer the formation of cha
in the ẑ direction on both sides of the hill in our instabilit
line ~cf. Fig. 1!. While the chains at the low-density sid
seem to be well separated, the fluctuations on the liquid
indicate that the chains already arrange themselves in an
ergetically favorable way, which resembles somewhat
structure in a bct crystal.

The question is whether this scenario corresponds t
condensationof the chains, as it was suggested by simu
tions of Stevens and Grest@29,30# for the closely related
dipolar soft sphere fluid. Clearly, the existence of a cond
sation transition requires attractive interactions between
chains. In the framework of our method, we cannot ‘‘look
directly into the chained fluid; we only see the formation

FIG. 6. Angular-dependent pair correlation function for spec
values ofu at r* 50.2 andT* 50.364. The insets show the deve
opment of the contact value and second peak ing(r 12,u50), and
the contact value ofg(r 12,u5p/3) vs reduced inverse temperatur

FIG. 7. Unit cell of the polarized body-centered-tetragonal l
tice. At close packing, the spheres of the chains in thez direction
have contact, and the distance between two spheres at the ed
(A6/2)s'1.2s. The dashed line is the body diagonal of the ce
For clearness, the spheres in our picture have a reduced size.
ex-
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chainlike clusters. Nevertheless, in order to get an idea of
interaction between these clusters, we consider the den
dependence of the mean internal energy per particle@26#,

bU

N
52

4p

5
rbm2E

s

`

dr12

hl 52~r 12!

r 12
, ~25!

at the temperatureT* 50.357 below the top of our instability
line ~cf. Fig. 8!. We find the internal energy negative on bo
sides of the hill, but of different behavior. We relate th
decrease ofU* 5bU/N at very low densities, where th
clusters are expected to be well separated, to the fact
here an increase of the density simply makes the ch
longer and consequently lowers the energy per dipole. At
‘‘liquid’’ side the energy is more negative, but increases w
increasing density. This suggests that the long clusters
though arranging themselves in the most favorable way,
repel each other on the average at the temperatures co
ered here.

We have, nevertheless, directly searched for coexiste
by investigation of the chemical potential and the pressu
for which explicit formulas are given in Appendix B. Coex
istence is defined by the requirement that, at fixed temp
ture, the chemical potential and the pressure have to be e
in the two phases. Investigating the accessible tempera
regime, we did not find any densities where the coexiste
conditions are fulfilled: the chemical potential on the hig
density side turned out to be always much larger than at
densities. However, with the methods used here we can
completely rule out a condensation at much lower tempe
tures, and in fact, the critical point from the simulation
Stevens and Grest@29# lies far below our instability line~cf.
Fig. 1!. At such low temperatures the chains are expecte
be much longer and even more straight. In this case theycan
mutually attract if they arrange as in the bct crystal. But ev
then the attraction is very short-ranged@21#, meaning that the
chains nearly have to have contact. In our opinion, t
makes the condensation transition at the very low densit
where Stevens and Grest have found it@29#, quite surprising.

We finally show that a coexistence can be found with o
methods when the dipolar hard spheres interact addition
via an isotropicattractiveLennard-Jones potential, i.e., whe
the pair potential is given by

-

s is
.

FIG. 8. Internal energy (U* 5bU/N) vs reduced density a
T* 50.357 in the low-density regime.
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u~1,2!5H ` :r 12,s

udd~r12!14eF S s

r 12
D 12

2S s

r 12
D 6G :r 12.s,

~26!

where the dipolar part is given in Eq.~2!. Regarding the
dipole momentm and the diameters as fixed, the strength o
the isotropic attraction can be measured by the quantitym*
5m/Aes3. Apart from the hard core atr 125s, Eq. ~26!
defines the orientationally ordered version of the so-ca
Stockmayer fluid. In the true ordered Stockmayer flu
~which has also been investigated by GEMC simulatio
@9#!, the hard core is absent, so that the short-ranged re
sion is modeled by a soft repulsive part of the Lennard-Jo
interaction. We regard this slight difference from Eq.~26! as
unimportant for the phase behavior; the additional hard c
in our model simply has the advantage that we can use
same Bridge-functions@cf. Eq. ~6!# as in the dipolar hard
sphere system.

In Fig. 9 we present our result for the RHNC instabili
line of the system defined by Eq.~26! at m* 52.5. Appar-
ently, the instability line of the perfectly aligned Stockmay
fluid lies at much higher temperatures than that of pure
polar hard spheres~dashed line in Fig. 9!. Due to the higher
temperatures, those fluctuations which point to chain form
tion in the absence of additional attraction are strongly we
ened here; the dominant phenomenon on both sides of
hill is a strong increase of the compressibility. This sho
that the additional attraction forces a condensation of the
before the low temperatures that are necessary for a c
formation are reached. Indeed, investigating again the che
cal potential and the pressure, we were able to find so
coexistence points, which are denoted by black circles in
9. Near the top of the instability line, which represents o
estimate for the critical point, the calculation of coexisten
points becomes problematic. We expect that, in order to
more precise values for coexistence points, the applicatio

FIG. 9. Stability limit ~solid line! and some vapor-liquid coex
istence points~black circles! of the fully ordered Stockmayer fluid
with m* 5m/Aes352.5, as it comes out from RHNC theory (T*
5kBTs3/m2). On the gas side, the coexistence points are so c
to the instability line that the separation cannot be seen here.
shown is the critical point due to a GEMC simulation@9# for the
fully ordered Stockmayer fluid atm* 52.5 ~closed square!. The
dashed line is the stability limit in the fully ordered dipolar ha
sphere fluid~see Fig. 1!.
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the so-called optimized RHNC method@51# would be appro-
priate. This was beyond the scope of the present work. W
we want to show with the Stockmayer results in Fig. 9 is th
here the RHNC method yields a true vapor-liquid conden
tion. This is consistent with the results from a GEMC sim
lation by Stevens and Grest@9#: they also found vapor-liquid
coexistence in the perfectly aligned Stockmayer fluid w
m* 52.5. The critical point from this simulation@9#, located
at Tc* '0.58 andrc* '0.3, is shown as a black box in Fig. 9
Comparing the location of the critical point from the sim
lation with our results, one has to note that our align
Stockmayer model has an additional hard core@cf. Eq. ~26!#,
which was absent in the simulation@9#. In view of this slight
difference, we regard the quantitative agreement between
RHNC theory and the simulation as satisfactory. This a
confirms the reliability of our results for the pure aligne
dipolar hard sphere fluid.

C. High densities

We now investigate the ordered dipolar hard sphere s
tem in the high-density regime, which begins approximat
at r* 50.6 ~in the right of the short plateau in Fig. 1!. At
high densities, only fluctuations atkÞ0 strongly increase for
T* →TS* .

In Fig. 10 we present the temperature dependence of
height of the main peaks of the structure factors for spec
values ofu (r* 50.8 andr* 50.9). Obviously, the highes
peaks and the strongest growth of their height occur fou
5p/3 (r* 50.8) andu5p/2 (r* 50.9). This is in contrast
to the low-density regime, where the highest peak at nonz
wave numbers always occurs atu50, pointing to the devel-
opment of chains in theẑ direction. Of course, also at hig
densities the order in theẑ direction is well developed, as ca
be seen from the sharp oscillations ing(r 12,u50) at T*
50.333 in Fig. 11. We understand the fact that the strong
growth now occurs forS(k,uÞ0) via the physical picture,
which we have already used in the discussion of the lo
density regime: lowering the temperature and/or increas
the density, the chains arrange themselves more and mo
a structure resembling the bct crystal~cf. Fig. 7!. In contrast
to the low-density region, these ‘‘interchain’’ correlation

se
so

FIG. 10. Main peak of the structure factor vs reduced inve
temperature for~from left to right! u50,p/3,p/2 at the reduced
densitiesr* 50.8 andr* 50.9. Forr* 50.8(0.9) the corresponding
wave numbers areksmax'7.0(7.0) atu50, ksmax'6.9(6.9) atu
5p/3, andksmax'5.9(5.8) atu5p/2.
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PRE 60 3191PHASE BEHAVIOR OF ALIGNED DIPOLAR HARD . . .
now become dominant. In this sense, the growth of the m
peak ofS(k,p/3) atr* 50.8 reflects the strong tendency to
configuration where a sphere in one chain is displaced in
ẑ direction with respect to the next sphere in the neigh
chain, so that the angle between the dipole and the conn
ing vector isp/3. This requires contact of the two sphere
Correspondingly, the wave numberkmax belonging to the
main peak inS(k,p/3) is almost the same as in the caseu
50, namelykmax'2p/s.

At the higher densityr* 50.9, the sharp increase of th
peak in S(k,p/2) suggests that now additionally nex
nearest-neighbor chains have a strong tendency to order
in the bct crystal~cf. Fig. 7!. The fact that the wave numbe
kmax(u5p/2) is lower than atu50,p/3 corresponds to the
larger distance between two spheres in the plane perpen
lar to ẑ. We finally note that upon lowering the temperatu
at r* 50.9, the main peaks of the structure factor grow
all the directions relevant in the bct crystal, namelyu50,
u5p/3, and u5p/2 ~cf. Fig. 10!. This indicates that the
system is close to a crystallization into a bct solid. It is
teresting, however, that the pair correlation functi
g(r 12,u) has at very low temperatures an additional sm
peak, which is absent at higher temperatures and which is
consistent with the bct structure: this is the peak ing(r 12,u
50) at r 12;1.25s ~see inset in Fig. 11!. A possible expla-
nation for this additional peak~which is much smaller than
the main peak atr 125s) is the fact that, after the bct struc
ture, the energetically most favorable solid structure
aligned spheres is a polarized fcc crystal@22#. In a close-
packed fcc crystal, the distance between two neighbo
spheres in the direction of the crystal axes is given byr 12

5A2s. Therefore, we interpret the additional peak
g(r 12,u50) as a hint that if the system goes into the~less
probable! fcc solid structure, the crystal axes will be paral
to the director.

IV. CRYSTALLIZATION

Our aim is now to find those densities and temperature
which the dipolar hard sphere fluid can coexist with a crys
Both phases are assumed to have perfect orientational o
In the following, we outline at first the corresponding dens
functional theory. The results are presented in Sec. IV B

FIG. 11. Angular-dependent pair correlation function for sp
cific values ofu at r* 50.8 andT* 50.333. The inset shows th
same atr* 50.8 andT* 50.208.
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A. Density functional theory

We start from the same approximate density functio
which we have recently employed to investigate the freez
of isotropic dipolar spheres@19,18#. Briefly, the functional
DV, originally derived for the freezing of the pure har
sphere system@52,53#, represents the difference of the gran
canonical potential between the two states considered
equal chemical potentials:

bDV@rs#5E d1Frs~1!lnS rs~1!

r l~1! D2Dr~1!G
2

1

2E d1E d2 c~1,2! lDr~1!Dr~2!. ~27!

Here,rs(1) andr l(1) are the singlet densities in the sol
and fluid state andDr(1)5rs(1)2r l(1). Thesinglet den-
sity of the liquid is given by Eq.~3!. It is the last term in Eq.
~27! which contains the essential approximation of t
theory: assuming that~in the neighborhood of the transition!
the structure of the solid state is close to that of the liqu
the corresponding excess free energy is expanded around
of the liquid up to second order in the density. In this w
the direct correlation function~DCF! c(1,2)l of the liquid
becomes the key ingredient. After minimization with respe
to rs(1), the functional DV is proportional to the pressur
difference between the two states, i.e.,DV@rs

eq#52(ps

2pl)V, whereps and pl are the pressures of the solid an
liquid state. Coexistence occurs forDV@rs

eq#50.
In order to use the functional~27!, a parametrized ansat

for the density in the solid state is required. We consider h
a system with uniform and perfect orientational order. The
fore, the density of the crystal,rs(1), factorizes into a posi-
tional contributionrs(r )5*dv1 rs(1), and ahomogeneous
orientational part which has the same form as in the liq
@cf. Eq. ~3!#:

rs~1!5rs~r !
1

2p
b~cosu!. ~28!

The functionb(cosu) is given by Eq.~3!. In order to de-
scribe the spatial dependence ofrs(r ) in the crystal, we fol-
low former treatments of liquid-solid transitions@54,55# and
parametrize this quantity as a sum of Gaussians around
lattice site:

rs~r !5~g/p!3/2(
R

exp@2g~r2R!2#. ~29!

The parameterg measures the degree of localization of t
particles and is closely related to the so-called Lindema
parameter@55#. The caseg50 corresponds to a homoge
neous number density, i.e., to a liquid. This can be seen m
easily from the Fourier representation of the Gaussian ans
i.e., rs(r )5(k r̃s,kexp@ik r # with r̃s,k5rsexp@2k2/4g#. Be-
sides g, the second parameter in Eq.~29! is the number
density of the crystal,rs51/V*dr rs(r ), which determines
the length of the lattice vectorsR.

The minimization with respect tors(r ) is not a free mini-
mization in the sense that~i! its shape is fixed by Eq.~29!,
and ~ii ! also the symmetry of the lattice vectors, i.e., t

-
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3192 PRE 60SABINE KLAPP AND FRANK FORSTMANN
crystal structure, has to be chosen. What kind of lattice st
tures can be expected? In view of the ground-state calc
tions for fully oriented spheres@21# and in view of the struc-
tural features in the dense liquid~cf. Sec. III C!, the most
obvious candidate at lowT* is the body-centered-tetragon
~bct! crystal: chains in theẑ direction where nearest-neighbo
chains are displaced vertically by half a particle diame
However, at low coupling strength~largeT* ) we expect the
dipolar interactions, favoring the bct lattice, to be domina
by the purely repulsive interactions of the hard spher
Since the pure hard sphere solid has a fcc structure@56#, we
can therefore expect to observe at sufficiently highT* a fcc
solid. We note that the high-temperature fcc solid will still
polarized, due to our assumption of perfect orientational
der. In view of these expectations, we will investigate bot
polarized bct and a polarized fcc solid. A further reason
investigate both lattices is that the energetic differences
tween these structures are small@22#.

Inserting the ansatz for the solid density@cf. Eqs.~28! and
~29!#, the ansatz for the liquid density~3!, and the expansion
~7! for the DCF into the density functional~27!, one gets an
explicit expression for the difference in the grand canoni
potential,bDV/V, depending on the parametersT, r l , rs ,
andg ~and on the lattice structure!. The technical details are
mostly in formal analogy to the case of theisotropic fluid.
Therefore, we refer to Refs.@18,19#. The final result is

bDV

V
solid5rs

3

2
@ ln~g/p!21#2rsln r l2~rs2r l !

2
rs

2

2
ũ2~rs ,g!2

1

2
gA g

2p
rs(

lÞ2
ul~rs ,g!

2
1

2
c̃l 50~k50!~r l

222r lrs!2
2p

3
b~Ps2Pl !

2,

~30!

wherePs5rsm and Pl5r lm are the polarization values i
the solid and the liquid. The polarization term stems from
integral of the form (r2/2V)*dr1*dr2cl 52(r 12), where it has
to be noted that the long-ranged part of the integrand is
sentially the dipolar interaction itself@cf. Eq. ~22!#. We have
evaluated the integral for a geometry without a depolari
tion field ~cf. Appendix A!. Physically, the polarization term
in Eq. ~30! reflects that a density jump from the liquid to th
solid leads to a lowering of the macroscopic energy den
2 1

2 P•E with E5(4p/3)P.
While the polarization term stems from the long-rang

part ofcl 52(r 12), its short-ranged contributions are contain
in ũ2(rs ,g). We evaluate this quantity using the Fouri
representation of the density, which leads to

ũ2~rs ,g!5 (
k.0

S (
shellk

P2~cosuk! De2k2/2gc̃l 52~k!.

~31!

The angleuk describes the orientation of a reciprocal-latti
vector k relative to the director (ẑ). The sum in the large
parentheses is a sum over reciprocal-lattice vectors w
c-
la-

r.

d
s.

r-
a
o
e-

l

n

s-

-

ty

th

fixed lengthk. Since this sum vanishes in the fcc case,ũ2 is
nonzero only for the less symmetric bct lattice.

Finally, the contributions of the DCF coefficients withl
50 and l>4 are contained in the quantitiesul , which are
given by

ul~rs ,g!5(
R

S (
shellR

Pl~cosuR! D
3E

0

`

dr12 r 12
2 e2g/2(r 12

2
1R2)cl~r 12!

3E
21

1

d cosu8egr 12R cosu8Pl~cosu8!. ~32!

Here,uR is the angle betweenR andẑ, while u8 is the angle
betweenR and the connecting vectorr12. Concerning the
real space lattice sums in the large parentheses, one h
note that these sums depend forl>4 on the orientation of the
lattice relative to the director (ẑ). In the case of the bc
lattice, we assume that the shorter side of the unit cell~cf.
Fig. 7!, i.e., the chain direction, is parallel toẑ, as one ex-
pects due to energetic reasons. In the polarized fcc lattice
situation is less clear, since the~dipolar part of the! energy of
this crystal only depends on the absolute value of the po
ization ~and thus on the density!. This can be seen from th
Lorentz formula@57#, which expresses the local field exerte
on a dipole in a lattice by a sum of continuum contributio
~proportional toP) and the field produced by the neighb
particles within a large sphere around this point. For a
mogeneously polarized fcc lattice, as considered here,
field of the neighborsalways vanishes, independent of th
orientation of the director relative to the lattice@17#. Now it
has to be noted that the important quantity in our dens
functional calculation is not the electrostatic interaction e
ergy but the ‘‘effective energy’’ represented by the last te
in Eq. ~27!, which contains the DCF. This term can favor
particular orientation of the fcc lattice relative toẑ. As sug-
gested by the result for the lattice sum over the fourth-or
Legendre polynomialP4 @17#, we allow here for two pos-
sible orientations:Pi^100& ~polarization along one of the
axes of the cubic cell! andPi^111& ~polarization along one
of the space diagonals!. Which structure ‘‘wins’’ has to be
decided during the numerical minimization. Since we ha
found that already thel 54 term is always very small, we
have neglected the higher terms withl 56 andl 58.

B. Coexistence results for crystallization

The points where the aligned dipolar hard sphere fluid
coexist with one of the crystalline phases can now be fou
by minimizing the corresponding density functionals. F
this, we minimizebDV/V at fixed r l , T and fixed lattice
structure~fcc or bct! with respect tors andg, and search for
those temperatures whereDV@rs

eq#50. This directly gives
the coexistence number densities and the coexistence
peratures. In Fig. 12 we present the resulting part of
phase diagram. The calculated coexistence points are
nected by the thick black coexistence lines.
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Apparently, both of the solid phases which we have c
sidered here~bct and fcc! are stable in certain parts of th
phase diagram. The fcc crystal appears at high tempera
and densities and also at low temperatures and extrem
high densities. Its occurrence at high temperatures can
explained by the fact that highT* 5kBTs3/m2 correspond to
low dipolar coupling strengths, meaning that the system
dominated by the pure hard sphere repulsion. The h
temperature fcc solid is still polarized, since we have
sumed the orientational degrees of freedom to be zero. C
cerning the low-temperature regime, the stability of the
solid might be surprising, since the bct crystal has~at fixed
density! the lower energy@22#. However, the bct crystal can
not be packed as densely as the fcc crystal, which expl
the stability of the latter at extremely high densities~the
maximum densities of the two crystals arermax,bct* 54/3 and
rmax,fcc* 5A2).

In the whole stability regime of the fcc solid, the nume
cal minimization of the density functional shows that t
preferred orientation of the lattice relative to the director (ẑ)
is given byPi^100&, i.e. polarization along one of the axes
the cubic cell. As explained in the preceding section~IV A !,
this preference cannot be traced back directly to a lowe
of the electrostatic energy in the crystal, but only to a lo
ering of the ‘‘effective’’ energy, expressed by the DCF
Eq. ~27!. Since the DCF is the second functional~density!
derivative of the free energy and therefore also contains
relational entropy, we understand our result as an indica
that this entropy is higher forPi^100& than forPi^111&.

Below the triple temperatureTt* '0.422, the ordered liq-
uid does not freeze directly into the fcc solid, but into t
energetically more favorable bct solid. Only at extreme
high densities does the expected transition from the bct to

FIG. 12. Phase diagram of fully aligned dipolar hard sphere
the temperature-density plane (T* 5kBTs3/m2, r* 5rs3). The
thick solid lines are freezing coexistence lines. At low coupli
strength~high T* ), the only stable solid phase has a fcc structu
where the polarization points along one of the crystal a
(Pi^100&). Below the triple temperatureTt* '0.42, a bct phase ap
pears. The dashed lines are density functional results@13,19# for the
temperatures and densities where anisotropic fluid freezes into a
ferroelectric solid@19# ~dashed line! and where the~metastable!
transition to a ferroelectric fluid occurs@13# ~dot-dashed line!. The
black circles denote the stability limit of the liquid phase calcula
by RHNC integral equations~see Fig. 1!. The black box marks the
GEMC simulation result@29# for the critical point of aligned dipolar
soft spheres.
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fcc lattice occur. The coexistence lines of this first-ord
transition were found by searching for thoseliquid densities
and those temperatures for which the minimization giv
both a bct and a fcc state withDVbct/V5DV fcc/V,0. Since
DVsolid/V52(ps2pl), this actually means that there a
three states with the same chemical potential~namely that of
the liquid!. The two solid states have the same pressurep,
higher than that of the liquid. Therefore, the above condit
indeed characterizes bct-fcc coexistence.

It is visible from Fig. 12 that the liquid branch of th
coexistence liquid/bct strongly flattens below the triple poi
and that it ends atr* 50.6. Below this density the minimi-
zation of the density functionals and therefore the calculat
of coexistence points fail. We suspect that here the den
difference between the coexisting liquid and the polariz
bct crystal becomes so large that the concept of our meth
namely the description of the solid free energy with liqu
state correlation functions, cannot work any more. The e
ing of the freezing line is unfortunate insofar as the know
edge of its continuation could also show the low-density
havior in a new light: the flattening of the freezing lin
suggests that the crystallization into the bct crystal occ
already at very low densities, where the system is charac
ized by the formation of~separated! chains in theẑ direction
~cf. Sec. III B!. This could even preempt the ‘‘vapor-liquid’
condensation of the chains, which was seen in the simula
of Stevens and Grest@29,30# ~in this simulation, the possi-
bility of a crystallization was not considered!. However, in
the framework of our investigation this remains a conjectu

We finally compare our results for the crystallization
the fully ordered dipolar hard sphere liquid with itsisotropic
counterpart, the freezing of which we have investigated
Ref. @19#. There we minimized, in formal analogy to th
present paper, a density functional which is based on
DCF of the isotropic liquid. According to our results@19#,
the isotropic liquid freezes at high densities and not too h
temperatures into apolarizedcrystal, which has at very low
temperatures a bct structure. The freezing points of the
tropic liquid are marked by the dashed line in Fig. 12. T
unfilled box on this line shows the density and temperatu
below ~above! which the coexisting crystal has a bct~fcc!
structure.

Comparing now this freezing line with that of the full
aligned liquid~thick black line!, one immediately sees tha
at fixed density, the ordered liquid freezes at much low
temperatures. Vice versa, at a fixed temperature the ord
liquid freezes at considerably higher densities. This is c
sistent with the corresponding pressure-temperature diag
which we present in Fig. 13: at fixed temperature~pressure!,
the ordered liquid freezes at a higher pressure~lower tem-
perature!.

From a physical viewpoint, we understand this result
the different arrangement of the spheres in the two de
liquids: in the ordered liquid, the spheres tend to form cha
in the ẑ direction where two neighboring chains are displac
~cf. Sec. III C!. This arrangement of the spheres, which
sembles the bct solid occurring at higher densities, has
stabilizing effects. First, the solidlike ordering reduces t
disorder in the underlying hard sphere system. In a de
pure hard sphere liquid, it is precisely this disorder whi
leads to the transition into a solid state, where, due to
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3194 PRE 60SABINE KLAPP AND FRANK FORSTMANN
larger free volume of a sphere, the entropy is higher tha
the liquid. The second effect of the bct-like ordering in t
dense oriented liquid is that by this the energetic repuls
which one would expect in a system of parallel dipoles,
strongly reduced already in the liquid phase. Considering
system at a fixed temperature, one has to exert a relati
high pressure, until the loss of entropy, resulting from
localization of the spheres in the crystal, is dominated by
lowering of the energy.

In the isotropic fluid, the structure is very differen
though there is a tendency to a parallel ordering of the
poles @13#, it is plausible that, due to the lack of a glob
director, the spheres disturb themselves much more and
not arrange so favorably as in the ordered liquid. This
quantitatively expressed in Table I, which contains so
thermodynamic quantities for an isotropic and an orde
liquid at an exemplary density and temperature. One can
that the isotropic liquid has a considerably higher pressur
lower compressibility, and a much higher chemical poten
than the perfectly aligned liquid. The total free energy
smaller in the isotropic case. The reason is the larger valu
‘‘ideal entropy,’’ stemming from the orientational degrees
freedom~cf. Appendix B!. The excess free energy, on th
other side, is higher in the isotropic liquid, reflecting aga
the stronger mutual disturbance of the particles. We sus
that it is this disturbance of the particles in the isotrop

FIG. 13. Freezing of the perfectly ordered~solid line! and the
isotropic@19# ~dashed line! dipolar hard sphere fluid in the pressur
temperature plane (p* 5ps6/m2, T* 5kBTs3/m2). The closed
squares denote the corresponding triple points liquid/bct/fcc.
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liquid that leads to the earlier breakdown of the liquid pha
when increasing the pressure at a constant temperatur
lowering the temperature at constant pressure.

Both the density-temperature and pressure-tempera
diagram~cf. Figs. 12 and 13! suggest that the presence
orientational order in the liquid phase canhinder the crystal-
lization in a certain part of the parameter space. This is a
an important point concerning the existence of aspontane-
ously polarized liquidphase: various simulations@4–7# agree
that such a phase is indeed stable relative to a polar
crystal in a small part of the phase diagram. Even den
functional theory in the form used here yields a transiti
from the isotropic into a polarized liquid, when one restric
the minimization to homogeneous states only@12,13#. How-
ever, the resulting transition line isotropic/polarized liqu
~dot-dashed line in Fig. 12! lies below the freezing line of the
isotropic liquid, which means that the polarized liquid is
metastable phase@19#. This is in contradiction to simulations
@4–7#. The present work, where we consider the perfec
aligned system, cannot contribute directly to the question
the stability of aspontaneously polarizedliquid phase in the
isotropic dipolar fluid. What becomes clear here is the stro
quantitative influence of the character~symmetry! of the liq-
uid correlation functions on the density functional results
the crystallization, and that using the DCF of the order
liquid leads to a widening of the stability regime of the liqu
phase. It is somewhat disappointing that the freezing line
the ordered liquid lies stillabovethe density functional re-
sults@13# for the transition line isotropic/polarized liquid~cf.
Fig. 12!. One possible reason might be the structure of
density functional@cf. Eq. ~27!# itself: as known from the
study of systems with repulsive spherical interactions of d
ferent ranges, this type of theory, based on a second-o
density expansion of the excess free energy@53#, has prob-
lems predicting freezing into non-close-packed structu
@58,59#. This suggests that at lowT* , where our results pre
dict a bct solid, the change of entropy due to crystallizat
is not treated correctly. For spherically interacting system
weighted-density~WD! theories of freezing@60–62#, which
avoid the density expansion, seem to improve the res
@59#. However, direct application of these theories to mo
complicated interactions is rather involved. Curtin@63# et al.
have proposed a free energy functional which combine
WD functional for the short-ranged repulsion and t
second-order theory for the ‘‘pertubation’’ part of the inte
action. In an attempt to apply this functional@63# to the
and
m

.
Refs.
TABLE I. Comparison of some thermodynamic quantities of fully aligned dipolar hard spheres
isotropic dipolar hard spheres atr* 50.8 and 1/T* 53.0 (T* 50.333). The quantities for the ordered syste
are calculated via Eq.~24! for the compressibility, Eqs.~B3! and~B4! for the excess free energy~including
the hard sphere contribution!, Eq. ~B1! for the total free energy, Eq.~B5! for the chemical potential, and Eqs
~B6! and ~B7! for the pressure. For the isotropic system, the corresponding formulas can be found in
@51,66#.

Isotropic system Ordered system

Compressibility (bxT /r) 0.0463 0.0547
Pressure (ps6/m2) 1.325 0.866
Chem. potential (bm) 1.290 0.203
Excess free energy (bFex/N) 0.077 21.820
Total free energy (bF/N) 23.677 23.043
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PRE 60 3195PHASE BEHAVIOR OF ALIGNED DIPOLAR HARD . . .
present problem, we found that the free energy of the s
has the wrong bending at high densities, making the appl
tion of the Maxwell construction and therefore a comparis
with the coexistence results from the functional~27! impos-
sible.

A more physical explanation for the too high position
our freezing line in Fig. 12 is our assumption ofperfect
orientational order: some disorder in the orientational str
ture ~which can be expected in a spontaneously ordered
uid! might lead to a lowering of the free energy due to t
additional entropy from the orientational degrees of freedo
If this additional orientational entropy is higher in the liqu
than in the solid, one can expect that the freezing line
moved towards still lower temperatures.

V. CONCLUSION

In the present work, we have analyzed the phase beha
of perfectly aligned dipolar hard spheres by application
the RHNC integral equation method on the fluid phase
this system. In order to get a first idea, we have applie
stability analysis of the homogeneous state. This allowed
on one hand, to interpret the line of points in th
temperature-density diagram, below which the RHNC eq
tions fail to have a solution, as an estimate for the stabi
limit of the homogeneous fluid phase: approaching this l
from the high-temperature side, various density fluctuati
strongly increase. Furthermore, a careful investigation of
‘‘diverging’’ fluctuations enabled us to make some pred
tions concerning the structure at very low temperatures.
low densities, the fluctuations point to the formation
chains along the director, where the spheres in the ch
have contact. This prediction is consistent with simulat
results for the closely related aligned dipolar soft sphere fl
@29#: there it was directly observed that at very low densit
and temperatures nearly all spheres are associated
chains. The simulation@29# furthermore suggests the exi
tence of a condensation transition from the dilute ‘‘cha
vapor’’ into a somewhat denser ‘‘chain liquid.’’ This coul
not be directly checked here: with our method, we can
look directly into the associated system; we only see
onset of the chain formation via the stability limit of th
homogeneous phase. Having this in mind, it is not surpris
that the critical point found in Ref.@29# lies far below our
instability line. We have, nevertheless, directly searched
coexistence by investigating the pressure and the chem
potential, for which we gave explicit formulas. In the tem
perature regime considered here, no coexistence was fo
This confirms that the condensation, if it exists, must inde
occur at very low temperatures.

It is plausible that the presence of an additional isotro
attraction between the aligned spheres makes a usual va
liquid condensation much more probable. Indeed, investi
ing a modified version of the so-called~aligned! Stockmayer
fluid, we found that its stability limit is located at muc
higher temperatures than in the pure dipolar hard sph
fluid. Furthermore, the RHNC method here indeed reve
condensation and allows us to calculate some coexiste
points. The numerical results are in fair agreement w
simulation data for the fully oriented Stockmayer fluid@9#.

At higher densities the structure of the liquid phase
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ready reflects well defined positions of the chains relative
each other, similar to what one finds in a solid with bod
centered-tetragonal~bct! structure. The formation of this
crystal structure is also indicated by the strongly increas
periodic fluctuations which occur at the stability limit of th
liquid phase. Minimizing a density functional of the gran
canonical free energy which is based on the liquid corre
tion functions, we calculate the coexistence lines at freez
Besides the bct solid, into which the system freezes at v
low temperatures, we find a triple point, above which t
liquid coexists with a~polarized! fcc structure. The compari
son of the freezing line of the perfectly ordered dipolar liqu
with that of its isotropic counterpart@19# shows that the pres
ence of orientational order in the liquid canhinder the crys-
tallization in a certain part of the parameter space: due to
presence of a global director, the dipolar spheres can arra
themselves much more favorably than in an isotropic liqu

APPENDIX A: COMPRESSIBILITY

The isothermal compressibility describes the response
the system to homogeneous fluctuations of the number d
sity, i.e.,dr(1)5dr (1/2p)b(cosu) with b(cosu) from Eq.
~3!. Inserting this@together with the expression~3! for the
undisturbed density# in Eq. ~16!, we find that the system is
stable against those number density fluctuations if

12r
1

VE dr1E dr2c~r12!5:Fbr xTG21

~A1!

is positive. We now expand the direct correlation function
Legendre polynomials@cf. Eq. ~7!# and consider separatel
each term in the resulting sum of integrals. Since the coe
cientscl 50(r 12) andcl>4(r 12) are short-ranged functions@cf.
Eq. ~21!#, the integral overr2 does not depend onr1 in
sufficiently large systems. This allows us to evaluate the c
responding integrals by the substitution (1/V)*dr1*dr2
→*dr12. Noting that *d cosu12Pl(cosu12)5(2/2l 11)d l ,0
and Eq.~14!, the right-hand side in Eq.~A1! becomes

12
r

VE dr1E dr2 c~r12!

512r c̃l 50~k50!

2r
1

VE dr1E dr2cl 52~r 12!P2~cosu!. ~A2!

The coefficientcl 52(r 12) has a special role: its long-range
behavior @cf. Eq. ~22!# shows that the last integral in Eq
~A2! is essentially an integral over the potential energy of
dipole at r1 in the field of all the other dipoles. Using
Gauss’s law, the integral can be evaluated for some part
lar shapes of theouter boundary of the system@64#. We
choose here a geometry for which the contribution of
outer boundary, which corresponds to thedepolarization
field, vanishes, so that only the Lorentzian field results
needlelike volume where the long axis is parallel to the p
larization of the system. This is the only reasonable assu
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3196 PRE 60SABINE KLAPP AND FRANK FORSTMANN
tion, since otherwise the macroscopic homogeneous po
ization would be destroyed by domain formation. T
resulting expression is

12
r

VE dr1E dr2 c~r12!512r c̃l 50~k50!2
4p

3
rb m2.

~A3!

This can be transformed further by using Eq.~23!, yielding

12
r

VE dr1E dr2 c~r12!

512rS c̃l 50~k50!2
1

2
c̃l 52~k50! D512r lim

k→0,k'z
c̃~k!

5FSS k50,u5
p

2 D G21

, ~A4!

which coincides with Eq.~24!.

APPENDIX B: EXPLICIT FORM
FOR THERMODYNAMIC QUANTITIES

In this appendix we give the explicit expressions for t
free energy, the chemical potential, and the pressure of
completely ordered system. The free energy can be writte

bF

N
5

bF id

N
1

bFR
ex

N
1D

bFex

N

with

D
bFex

N
5

1

2ElR

1

dlE d1E d2 r~1! r~2!g~1,2,l!b
]u~1,2!

]l
.

~B1!

The first term on the right-hand of Eq.~B1! is the ideal part
of the free energy. Omitting the contribution of the therm
de Broglie wavelength, the ideal term is given by

bF id

N
5 ln r21. ~B2!

We note that the ideal free energy of the corresponding
tropic fluid contains an additionalnegative contribution,
namelybF id/Nu iso5 ln r212ln 4p, where ln 4p reflects the
additional entropy due to the freely rotating dipoles. T
next term in Eq.~B1! is the excess free energy of the refe
ence system, namely the pure hard sphere system. For
we use the Carnahan-Starling formula@65#

bFR
ex

N
5

bFHS
ex

N
5

4h23h2

~12h!2
, h5

p

6
rs3. ~B3!

The last term in Eq.~B1! contains an integral over th
strength of the interaction;lR is the interaction strength be
longing to the pure hard sphere system, andl51 belongs to
the full interaction. As shown previously for isotropic sy
tems@51,66#, the RHNC approximation allows us to calcu
r-

he
as

l

o-

his

late thel integralwithout a further approximation. Special
izing these calculations to the case of the perfectly orde
dipolar fluid, we get

D
bFex

N
5rpE

0

`

dr12 r 12
2 F(

l 50

l max @hl~r 12!#
2

2l 11
2@hHS~r 12!#

2G
1

1

4p2E0

`

dk k2@ c̃l 50~k!2 c̃HS~k!#

1
1

8p2E0

`

dk k2F H E
21

1

dx lnS 1

2r(
l 50

l max

c̃l~k!Pl~x!D J 22 ln@12r c̃HS~k!#G
2

r

2
@ c̃l 50~k50!2 c̃HS~k50!#2

2p

3
rbm2,

~B4!

wherex5cosuk . The last term in Eq.~B4! arises from an
integral of the form (r/2V)*dr1*dr2 cl 52(r 12) ~cf. Appen-
dix A!. It can be interpreted physically as the macrosco
energy density in a polarized system in which the depo
ization field vanishes. That is,2(2p/3)r2m2 is the same as
2 1

2 P•E, where P5rm ẑ is the polarization and E
5(4p/3)P is the Lorentzian field.

Based on Eqs.~B2!, ~B3!, and~B4!, the chemical poten-
tial follows from a differentiation with respect to the densit
i.e., m5(1/V)]F/]ruT,V . Again we make use of previou
results@66# and evaluate the required differentiations of t
correlation functions inbDFex/N with the help of the RHNC
closure~5!. This yields

bm5 ln r1
8h29h213h3

~12h!3
1Dbmex

with

Dbmex5r2pE
0

`

dr12r 12
2 F(

l 50

l max @hl~r 12!#
2

2l 11
2@hHS~r 12!#

2G
2r2pE

0

`

dr12 r 12
2 F (

l 50

l max hl~r 12!c
l~r 12!

2l 11

2hHS~r 12!c
HS~r 12!G2r@ c̃l 50~k50!2 c̃HS~k50!#

2
4p

3
rbm22r22pE

0

`

dr12 r 12
2 @hl 50~r 12!

2hHS~r 12!#
]

]r
BHS~r 12!. ~B5!

Finally, the pressure is given by

bp5r1r
2h~22h!

~12h!3
1Dbpex. ~B6!
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For the dipolar contributionbDpex, we use a Gibbs-Duhem
relation

Dbpex5rDbmex2rD
bFex

N
. ~B7!

Alternatively,Dbpex pressure can also be calculated direc
via a differentiation of the free energy@cf. Eq. ~B4!# with
rt

er

R

.

a,
respect to the volume. Due to the last term in Eq.~B5!, the
two resulting expressions for the pressure do not coinc
which represents one of the thermodynamic inconsisten
of the RHNC equation@51#. The described inconsistency ca
be removed by varying the density of the hard spheres in
reference system~optimized RHNC! @51#. These additional
consistency cycles have not been carried out in the pre
work; for the pressure we used Eq.~B7!.
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