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Phase behavior of aligned dipolar hard spheres: Integral equations and density functional results
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Using reference hypernetted chain integral equations, we investigate the phase behavior of a system of
dipolar hard spheres witherfectorientational order. At low densities, the correlation functions show a strong
tendency to the formation of head-to-tail chains. The occurrence of a condensation of the chains, as suggested
by a recent simulation, is critically discussed. At higher densities the structure of the liquid phase already
reflects well defined positions of the chains relative to each other, similar to a body-centered-tetragonal
structure. Minimizing a density functional of the grand canonical free energy which is based on the liquid
correlation functions, we calculate the coexistence lines at freezing. Interestingly, the system freezes at much
lower temperatures than the corresponding isotropic f[l8d063-651X99)11809-9

PACS numbes): 61.25.Em, 64.70.Dv

I. INTRODUCTION istence of a ferroelectric fluid. However, the fact that these
investigations exclude crystalline states has motivated some
In recent years, the phase behavior of simple dipolafurther density functional studi¢47—-19 where well-known
model fluids has attracted much attention. Besides the faatescriptions for the liquid-solid transition of simple fluids
that dipolar interactions are nearly omnipresent in moleculaf20] have been generalized to the dipolar case. It has turned
liquids, there are also several artificial systems where theut that the results not only quantitatively but also qualita-
dipolar interaction plays a dominant role. Most important aretively strongly depend on the approximate treatment of the
the so-called ferrofluids, which are stable colloidal suspeninterparticle correlations: Substituting them by their low-
sions of ferromagnetic particles, dissolved in a carrier liquiddensity limit, it was show17] that the ferroelectric fluid is
such as water or ofl1-3]. indeed a stable phase in a small density regime. On the other
Besides their potential applicability, dipolar fluids are alsohand, using a free energy ansatz which is based on the cor-
of general theoretical interest related to the peculiarities ofelations of the isotropic dense liquidalculated by refer-
the dipolar interaction: its long range and its strong anisotence hypernetted chain integral equatjotise authors have
ropy, which is expressed by the fact that the configuratiorfound that the ferroelectric fluid is only a metastable phase
with lowest energy is a nose-tail alignment of the dipole[18,19: cooling the dense isotropic liquid, the system
moments, while two dipoles lying side by side prefer to pointfreezes into a ferroelectric solibeforethe temperatures are
antiparallel. These properties of the dipolar interaction makelow enough for the transition into a ferroelectric liquid. Ac-
the investigation of dipolar model fluids—both by theory andcording to our results, the ferroelectric solid has a body-
by simulation—so complicated that up to now even thecentered-tetragondbct) structure[18,19. A polarized bct
phase diagram of the simplest dipolar model fluids, namelyrystal can be viewed as a system of polarized chains, where
repulsive spheres with an embedded permanent point dipolegarest-neighbor chains are displaced in the direction of the
is not completely understood. Most work has been done opolarization, so that a sphere in one chain sits between two
anisotropic system of dipolar spheres. Here, one of the mosspheres of the neighboring chain. The occurrence of this par-
interesting insights was that orientationally disordered dipoticular lattice structure is not surprising in the light of some
lar spheres can overcome the frustration, produced by thground-state calculations concerning a systenpeffectly
anisotropy of the dipolar interaction and can spontaneouslgligned dipolar sphere421,22. The latter represents the
form ferroelectricphases, which are characterized by a long-simplest model for an electrorheological fluid, where the di-
ranged parallel order of the dipole moments. This was firspole moments are induced by an external ficdée, e.g.,
detected in a simulation of dipolar soft sphefé®$] and later  Refs.[23,24])). At sufficiently strong fields, the spherelike
also in simulations of dipolar hard sphergs-8] and the particles in an electrorheological fluid form thick columns in
so-called Stockmayer flui®], where the dipolar potential is which the structure is solidlike with the symmetry of a body-
supplemented by an additional isotropic Lennard-Jones atentered-tetragongbct) crystal[25]. That this lattice is pre-
traction. Moreover, those simulations where a very broaderred energetically with respect to other lattice structures
density regime was investigatf4-8] suggest that the ferro- was explained first by Tao and S{1]: they showed that,
electric order is not necessarily accomplished by a transladue to the discrete nature of the dipole density around a
tional order, but can also be realized ifl@d state. Various polarized chain, two infinitely long polarized chains feel a
theoretical studies, including density functional calculationsmutual short-ranged attraction, if they are shifted relative to
[10-13, integral equation approachg44,13, and more each other by half a particle diameter. Because of this attrac-
phenomenological theori¢45,16, seem to confirm the ex- tion, the bct structure is indeed the structure with ltheest
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energy, if only polarized systems are considdi22]. There- influence of a strong field, the tendency to minimize the en-
fore, our density functional resuf18,19 that the low- ergy should lead to the formation of lonthainsin field
temperature ferroelectric solid phase has a bct structure is idirection, where the spheres in the chains have contact. In-
principle satisfying. deed, in the simulation of Stevens and Gi&&,29, both the
However, the fact that our ferroelectric bct solid com- dilute and the denser liquid phases were characterized by a
pletely preempts the ferroelectriluid phase contradicts the pronounced chain formation. This fact raises the question of
simulations[5,7] and therefore shows that the density func-whether the chains mutually attract and if in this way a liquid
tional theory has to be improved. A hint towards a promisingphase is formed. The ground-state res{@%] for fully po-
improvement is given by simulation results for the two- larized chains make such an attraction not very likely: in
particle correlation functions in the ferroelectric flUid,5]: order to feel a mutual attraction, the chaigp have to be
here one already sees the development of vertically displacecery long, and(ii) have to arrange themselves in a very spe-
chains, which reflects somewhat the structure of the bct solidial mannertnamely similar to the bct phaseBut even then
occurring at high densities. We expect that this arrangemerthe mutual attraction is very short-rangg2il], so that an
of the spheres in the ferroelectric fluid “*helps” the latter to attraction under gaslike conditions seems questionable. The
be stable against the solid in a small density regime. We alsnature of the driving force of the condensation is therefore
suspect here a relation to the failure of our density functionafar from being clear. Teixeirat al. [32] have attempted to
theory to find a stable ordered liqujd8,19: there we have investigate the condensation by a strong idealization: the
approximated both the free energy of the ferroelectric liquidchains are modeled by alignedds with equispaced dipoles
and the ferroelectric solid using correlation functions of thealong the long axes of the rods. Thg92] constructed a
isotropic liquid where the effects described above are verymean-field-like free energy of these systems, where the di-
weak[13]. polar interactions are only taken into account by a term rep-
This was one of the motivations for our present study,resenting the electrostatic energy density in the system of
where we investigate—as a first step—the structural featurgsolarized rods. Since this term is negative and its absolute
and the freezing of dipolar hard spheres wiitrfect ferro-  value increasegat fixed temperatujewith increasing den-
electric order As in our former work about the freezing of sity, it acts as arattractive part of the free energy, so that
isotropic dipolar sphere$18,19, our investigation is based indeed a condensation of the dipolar rods is fo[B@l. It is,
on the two-particle correlation functions of the system, cal-however, clear that this approach completely neglects the
culated by integral equations in the reference hypernettednisotropic short-ranged correlations. That these might be
chain(RHNC) approximation. In comparison to the isotropic crucial can be seen from the example of an isotropic dipolar
case, the investigation of the perfectly ordered system is ledsard sphere fluid: here, the energetically favored formation
complicated, since the orientational degrees of freedom aref wormlike chains(which is visible in the behavior of the
zero. The formal way to solve the integral equations for syscorrelation functiond33,13 and can also be observed di-
tems with perfect orientational order has already been giverectly in simulationg34,35,30,8) is so pronounced that pre-
in 1988 by Caillolet al. [26], as a specialization of the cor- viously expected gas-liquid condensation is completely pre-
responding equations for isotropic systefi28,28. Based on empted 34]. In view of the fact that, apart from the work of
the RHNC correlations we then construct an approximatd eixeiraet al.[32], there are up to now no theoretical studies
density functional for the difference between the grand caef the possible condensation of aligned dipolar spheres, a
nonical free energies between the fully oriented solid and theareful study on the basis of the RHNC correlation functions
fully oriented liquid. By minimization we calculate the co- seems to be justified. Due to our positive experience with
existence points at freezing, for which, to our knowledge, ndsotropic dipolar spherd4 3], we use a similar method here:
theoretical results are available up to now. It is clear that thédrom the RHNC correlations, we calculate fluctuations
study of the perfectly ordered system cannot contribute diwhich—as will be shown—are strongly growing when low-
rectly to the phase diagram of isotropic dipolar spheresering the temperature. In the whole low-density regime, the
However, we want to show here that due to the correlationfluctuations point to the expected chain formation. However,
in the dense ordered liquid, it freezes at much lower temperanvestigating directly the pressure and the chemical potential
tures than the corresponding isotropic system. (for which we give explicit formulas heyeno coexistence
Apart from the freezing and the structural features of thepoints are found. We finally show that vapor-liquid coexist-
polarized dense dipolar hard sphere fluid, we will also invesence can be found with the RHNC method if the pure dipolar
tigate the low-density regime. The motivation was a receninteraction is supplemented by an additional Lennard-Jones
simulation result for an aligned dipolar soft sphere fluidattraction, i.e., when an aligned Stockmayer fluid is consid-
(which differs from the system considered here only in theered.
description of the short-ranged repulsion of the spheres The paper is organized as follows. In Sec. Il we sketch the
ing Gibbs-ensemble Monte Carlo simulations, Stevens andasic steps towards the solution of the RHNC integral equa-
Grest[29,30 showed that, at very low densities, a vaporlike tions. Section IIl A summarizes our method to investigate
and a liquidlike phase seem to coexist. On one hand, thiand interpret fluctuations which occur upon lowering the
seems not so surprising, since the Boltzmann weighted avetemperature. The fluctuations at low densities and the ques-
age of the dipolar interaction between two polarized spheregon of condensation are discussed in Sec. lll B, and Sec.
is attractive[31]. On the other hand, there is a strong argu-Ill C contains the high-density behavior. In the subsequent
ment indicating that such two-particle considerations are nosection (Sec. IV A), we briefly describe the density func-
sufficient: already in 1970 de Gennes and Pini& pre- tional theory for the calculation of the coexistence points of
dicted that in a dilute system of dipolar spheres under thdéreezing. Section IV B contains the numerical results for the
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high-density region of the phase diagram of fully orientedwhere 8=1/kg T, andB(ry,) is the so-called Bridge func-
dipolar hard spheres. Finally, we give in S¥ca short sum- tion. In this work we use the reference hypernetted chain

mary and discussion. (RHNC) approximation39], whereB(r,) is defined by the
Verlet-Weiss correlation functions of the underlying hard
Il. THE MODEL AND THE CALCULATION sphere fluid40],

OF CORRELATION FUNCTIONS he he " "
) ) B(ri9)—B™(r15)=Ing"™(r15) —h™(rq5) +c™(rqo).
Our model systems consist of hard spheres of diameter ! ' ' 2 ! (6)
with an embedded point dipole of strengihat their center.
We assume that the system hmesfectorientational order in  The Bridge functions are evaluated at the density of the fluid
the sense that all dipole moments point in the posiive ynder consideration.
direction (described by the unit vecta); orientational fluc- In the following we sketch the main steps towards the
tuations with respect to this director are not permitted. In thismumerical solution of the integral equations. At first, the two-
case the pair potential of two particles 1 and 2, located at particle functions are expanded in an appropriate angle-

andr,, is given by dependent basis set. Due to the cylindrical symmetry with
respect to the director, all functions iof, can be expanded in
© <o Legendre polynomials:
u(l,2)= ()
Uga(r12) >0, o
_ — |
Wherer12:|r12|5|rl—r2| and f(rlz)_f(r12v‘912)_|Z:0 f'(r,1) Pi(cosf;,)
2 2
Uga( 19) == [ 1 3(c0S6;0) 2] = — 2= P,(c0S61). o 21+1 (1
rfg r?z with f(rlz):T d(cosfq,)f(r12)P(c0osh;y).
-1

) @

Here, 6, describes the orientation of, with respect to the

z, andP,(cosb;,) is the usual second-order Legendre poly-
nomial.

Since the pair potentidlcf. Eq. (2)] and therefore also the
correlation functions do not depend on the sigm gf, only

h . for th lculati ¢ lation f . even values of need to be considered. We terminate the
The equations for the calculation of correlation U”Ct'onsexpansionﬂ) atl,..=8. In order to transform the closure

in the fully aligneq dipolar f!uid follow frpm a specializatiqn relation(5) into equations for the coefficienty(r,), we use

of the corres_pondlng gqqatlons for the isotropic case. At fllrsta trick, introduced by Fries and PatE37] and Caillol[28]

the one-particle density in the homogeneous but orientatiorg, yhe treatment of aisotropic dipolar system: a differen-

ally ordered system can formally be written as tiation of the closure avoids any approximate expansion of
the logarithm in Eqg. (5). Noting that P,(cos#)

S 20+
p(1)= ib(cosg) with b(cosf)= >, —— P,(cosb), ='\/47r/2I +1Y|o(w), we can use the angular operator
2m <o 2 () with £ Y,o(w) = VI(T+1)Y,;(w) to get
3

wherep is the number density. The form b{cosé) reflects c(ri)=0'(rip)+> > h™(ripA(m,n,l)

that the orientation of a dipole is not a true degree of free- m n

dom: as follows from the completeness relation for spherical n _ AN n

harmonics[36], b(cosé) in Eg. (3) is a & function, i.e., X119 = Ci(rg) +erio], @

b(cos#)=&(cosh—1). Consequently, all orientational order

parameters, defined in the usual wdg7] by (P)

::ffld cosfd P,(cosh)b(cosh), have identically the value 1, @' (r1p)=—pBu(r;)+B'(r). (9)

as one expects in the caseprfectorder. In particular, the

polarization is given byP="Pz, whereP=pu(cost)=ppu. For the present calculationy'(r;)=—2u?/r3,8, and
The whole structural information about the system is conBl(r,,)=B"S(r,) 8 0. Finally, the constanA in Eq. (8) is

tained in the total and direct correlation functidnd,2) and given by

¢(1,2), which depend here only ar,. The correlation func-

where

tions are calculated by an iterative solution of the Ornstein- n(n+1)
Zernike (OZ) equation[38] A(m,n,l)= WC(mnI,OOO)C(mnI,Olb, (10
h(f12)=C(f12)+PJ drzh(riz)c(ray) (49 where theC() are Clebsch-Gordan coefficients. Due to the
form of the denominator iA(m,n,l), the relationg8) and
combined with the closure relation (10) allow the calculation of the'(r;,) only for | #0. For
I =0 we differentiate the closur) with respect to the par-
C(rip)=—Bu(riy) +h(riy) +B(ri)—In[1+h(rqy)], ticle distancer 1», which leads to a simple differential equa-

(5) tion:
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P P | max P 0.5
- 1=0 —_ I=0 ++ | —_—
&rlzc (rlZ) &rlz(p (rlZ) =0 2|+1h(r12)(9r12 04 b
X[h'(r)—c'(rp)+¢'(rp)]. 11 o
The OZ equatiorni4) is most comfortably treated in the Fou- &
rier space: 0.2 | g GEMC critical point
~ ~ ~ ~ (DSS)
h(k)=c(k)+ph(k) c(k). (12 o1 b
Here, f(K) = fdr exfik-r,]f(r1,) with f=h or c. We ex- 0 e
pand these functions as 0 01 02 03 04 05 06 07 08 09 1
p*
Imax
Fk)=F K,0,) = T (K)P,(cos6 , 13 FIG. 1. Nonsolution regime for the perfectly ordered dipolar
(k)=1(k. 8 |=§:o (k)Py(cosi) 13 sphere fluid T* =ksTo%/ u2, p* =pa3). Also shown is the

critical point of the perfectly ordered dipolar soft sphé@SS
where 6, is the angle betweek andz, and the coefficients system due to a GEMC simulatid@9)].
are Hankel transforms of the corresponding spatial functions:
come very large. Moreover, the character of the strongly in-
creasing fluctuations indicates the structure of the corre-
sponding low-temperature statel3,45,41. Due to this
positive experience and in order to understand what is going
Here,j,(krq,) is a spherical Bessel functiofid6] of orderl,  on in the perfectly ordered system, we apply here a similar
andi =/~ 1. With Eq.(13), the OZ relation(12) becomes fluctuation analysis. This is formally described below. The
fluctuation analysis will enable us to distinguish a low- and a
high-density regime in Fig. 1. These regions are discussed
separately in Secs. Il B and 1l C.

?'<k>=4wi'f:drlzrizmkrlz)f'<r12>. (14

h'(k)—c'(k)=p>, A™(k)c"(k)[C(mnl,000]2. (15)

Equationg(15), (8), and(11) can now be solved numerically
by an iteration procedure. All of the described numerical _ » _ o
steps are specializations of the more involved formalism for We start with the condition by which the stability of a

the isotropic dipolar fluid, which is extensively described ingiven equilibrium state, characterized by the one-particle
Refs.[13,33,41. density p®q1), can bechecked46,41. The requirement is
that the quantity

A. Fluctuations and stability

Ill. CORRELATIONS AND FLUCTUATIONS B 520
IN THE L|QU|D PHASE ﬁﬁﬂ ::Ej dlf dZW 5/)(1)5[)(2)
We describe the state of the ordered dipolar hard sphere o
fluid by the reduced density* = po and the reduced tem- 1 (1,2
peratureT* =kgTo®/ u?. It is typical for the RHNC integral = Ej dlf d2| ———-c(1,2)| |6p(1)dp(2)
equations that they cannot be solved for all parameters, and P e

the same occurs here: lowering the temperature at constant (16)
density, we find a temperatufi§ (p*) below which the nu-

merical solution breaks down. These temperatures define @ust be positive for arbitrargbut smal) density fluctuations
line in theT* — p* diagram which we present in Fig. 1. The Sp(1)=p(1)—p®Y(1). Up tosecond orders() is the change
hill at low densities is somewhat reminiscent of the spinodaln the grand canonical potenti& induced by the density
of a vapor-liquid transition, and indeed, in a Gibbs ensemblggyiations.

Monte Carlo (GEMC) simulation of the closely related  Equation(16) holds for any one-component fluid. In order
(aligned dipolar soft sphere fluifi29], coexistence of a va- 5 apply it to the fully aligned dipolar fluid, we use the ex-

porlike and a liquidlike phase has been fod@8]. In Fig. 1, pression(3) for the undisturbed densiy®Y1) and make the
the critical point from the simulatiof29] is denoted by the  fq|lowing ansatz for the fluctuations:

black box. That this point lies far below our nonsolution line

might seem to be consistent with the viewpoint of some au- 1

thors that th_e non§olgthn line, calculateq by integral equa- 5p(1)=5p(r)2—b(cos¢9) 7

tion theory, is an intrinsic feature of the integral equations ™

themselves and therefore does not necessarily have a physi-

cal origin[42—44. However, our experience for the case of with b(cos6) from Eqg. (3). This ansatz reflects that the ori-
isotropic dipolar fluids[13] and other complex systems entational order cannot be disturbed, since the orientational
[45,4]] shows that near such nonsolution lines, some redegrees of freedom are zero. Only fluctuations in the trans-
sponse functions, i.e., mean squared density fluctuationfational degrees of freedom are possible. A Fourier transform
which can be calculated from the RHNC correlations, bethen reduces E(16) to
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1 _ _ In the context of a possible vapor-liquid condensation of
/5’5Q=ﬁ > dp(k)M (k) sp* (k), (18 the system, the relevant quantity is the compressibjfify
. measuring homogeneous fluctuations of the number density.
_ In a simple isotropic fluid, the reduced isothermal compress-
where V is the (fixed) volume of the system andp(k) ibility By1/p is given byS(k=0)=S(k=0). However, in a
=8p(k)/\p (p is the number densily The coupling coef- completely ordereddipolar system this long-wavelength
ficients of the density fluctuation®) (k), are given by limit is not unique[26] sinceS(k) depends on the direction
of the wave vector also in the limk—0. To see this, we

~ ~ ~ note the relatior(20) betweenS(k) andc(k) and make the
M(k)Zl—PC(k)Zl—PZ c(k)Pi(cosy). (19  ysual assumptiofd]

Equation(19) shows the way of finding the stability limit of Crig == pulrig, - iz, @)
the fluid phase: lowering the temperature at constant densityyhich means thaficf. Eq. (2)] the coefficient withl =2 be-
we investigate the behavior &fl (k). In the stable system, haves like

M (k) has to be positive for each wave number |k| and s -
also for each direction df relative toz. The stability limit is ¢ N2 —2Bu7Iry,

therefore reached if at least one of the quantibB) goes  Tpe higher coefficients remain short-ranged. Using the prop-

to zero. 5 erties of the Hankel transforficf. Eq. (14)] it can be shown
We now assume that tho$é(k) which become smallest that, thereford 26,50,
at the stability limit give a hint to the phase behaviiwow

r 12— o, (22)

the instability line. The physical meaning of tihé(k) be- c#4(k=0)=0, (23
comes clear from the fact that they are inverse to the mean
guadratic density fluctuatiorjg1]: T=2(k=0)=—8mwBuY3.

1, — = ~ 1 ~ _ Equation (23) together with Eg. (13) explains why
T;<5p(k) Sp* (K))=[M(K)]~"=1+ph(k)=:S(k). S(k—0) depends orgy. In Ref.[26] it was shown via the
(20) relation between pressure and compressibility that the latter
is given by the long-wavelength limit of the “perpendicu-

The latter relation betweeM (k) andh(k) follows from the lar” structure factor.

OZ equation Eq. (12)]. In order to use a common language, B -

we have also introduced the structure fa&@k) in Eq. (20). —x1= lim Sk)= S( k=0,0= —)

In a simple (isotropig fluid where S(k)=S(k), the strong p k—0klz 2

increase of the main peak B(k) at k#0 usually indicates 1

the development of three-dimensional translational order, _ |\~/I(k=0,¢9: Z) (24)
i.e., a crystallization. In our polarized system, the structure 2

factor also depends on the directionkgfmeaning that also ) ) ) o )

the development of an order, which is restricted to a specifién Appendix A we give an alternative derivation of this re-
direction relative toz, can be detected. The correspondingsu“’ starting d_weqtly from Eq(16). .

wave numberk, iS @ measure for the dominating wave- '_I'he investigation of the system W'th _the_ me_thods_ o!e-
length in the roal space, i.en~k /2. A related situa- scribed here shows that the nonsolution line in Fig. 1 is in-
tion oceurs. for example’ i.n quuir?ja crys;tal model Systemsdeed an estimate for the instability line of the homogeneous
close to tr,1e nematic-to,-smecrk—transition [47]: there unperturbed system: approaching this line from above, sev-

S(kLZ) is essentially structureless whig(k||z) exhibits a eraI_M(k) become very small, i.e., several fluctuations tend
strongly increasing peak at a wave number which correlo diverge.
sponds to the period of the layers in the smegtiphase.

In order to get more detailed information, we will often B. Low densities and the question of condensation
relate the behavior o8(k)=S(k, ) to that of the pair cor-
relation functiong(rq,,6)=1+h(r,,,6). It has to be noted
that, in generalS(k) in the ordered system cannot be viewed Up to the density* ~0.45, which corresponds roughly to
as a Fourier transform af(r,,): S(k) contains a sum of the the end of the hill in the instability lindcf. Fig. 1), the
coefficientsh!(k) where each coefficient is a Hankel trans- Stéepest descent upon lowering the temperature occurs in
form [cf. Eq. (14)] of the corresponding'(r,), but the or- M(k=0,6=/2). Following Eq.(24), this means that the
der of the involved Bessel functions dependd odowever,  strongest fluctuations are those of the number density, mea-
at the physically interesting wave numbers, namély sured by the compressibility. This pointat least on first
~2l o, the functions'j; become very similaf36] so that ~ sight to a vapor-liquid transition in the system. In Fig. 2 we
in this caseS(k,6) can indeed be viewed as the Fourier show the compressibilityT =Bx+/p at two typical densi-
transform of g(rq,,6) [48] (apart from an unimportant ties, namely ap* =0.02 andp* =0.2 (marked by arrows in
S-function term). Fig. 1. Also shown isy} at p* =0.5, which is a “change-

1. Fluctuations
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26 ———— — 5 . .
F 1 100 v
24l p*=0.02 | M [p*=0.2 p*=0.5 S feontact 4SS
22t 141 1 a5 || 50F o0 1 35 g::k
2y 3
18 |
16} 2
14 - ) .
170 XAr
1.2 XT*
1 ‘ ol 0 b -5 L . : '
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1/T* UT* T+ r Jo
FIG. 2. Reduced isothermal compressibility(=8xr/p) vs FIG. 4. Angular-dependent pair correlation function for specific
reduced inverse temperature for three differéotv) densities. values off at p* =0.02 andT* =0.357. The insets show the devel-

opment of the contact value and the second peakiin,,6=0) vs
over density” in the sense that here already periodic fluctuareduced inverse temperature.
tions dominate, but the compressibility still shows a striking
behavior. Not only at the low-density side of the hill in our insta-
Although the compressibility strongly increases at all den-bility line, but also for liquid densities the strong increase of
sities shown in Fig. 2, a “diverging behavior(iwhich one the main peak irS(k,#=0) points to an association of the

expects at a vapor-liquid transitipseems to occur only at particles into chains along thedirection (cf. Fig. 5 for p*

the right side of the hill in the instability linep(" =0.2  =0.2). However, a difference in the low-density side occurs
—0.5). At the low-density side o* =0.02), however, we jnsofar as now als&(k, 6= /3) has its main peak &0,
observe another strongly increasing fluctuation with compaznd that this peak, though smaller than that for 0, in-
rable strength: as visible from Fig. 3, the structure factar in creases remarkably fof* —Tg. Correspondingly,g(r,)
direction (¢=0) has a peak dto~7 which grows strongly  shows an interesting structure also in the directiam/3.

for T* —Tg . The fact tha(k) has no pronounced structure This can be seen from the strong increase of the contact
in the other directions ofk means the onset of one- value of this function in Fig. 64* =0.2). We understand the

dimensional order aloné with a period of about one sphere development of order in this particular direction relativezto
diameter, i.e., the formation of aligned chains where theas a consequence of increasing chain interactions: if two
spheres tend to have contact. This is qualitatively consistersitraight chains of polarized spheres are lying exactly side by
with the simulations of Stevens and Grg29,30. The asso-  side, both of them act as a strongly elongated dipole, so that
ciation into chains is also seen in the behaviogff,,) (cf.  their interaction is repulsive(irrespective of the chain
Fig. 4): here we see a sharp increase of the contact value andngth. It is much more favorable for the chains, if they are
the second peak aj(r,,6=0). The contact value 88=0  so arranged that the spheres in one chain are displataty

is much larger than in other directions, for exampledat the directoy by half a particle diameter with respect to the
= /3. Finally, the shape ai(r,,, 6= m/2), which describes spheres of the neighboring chains. Then the mutual repulsion
the structure in the equitorial plane of a sphere, shows that ais strongly lowered. When the chains are displaced as de-
association in this direction is avoided, as one expects due tcribed above, the angle between the dipole in a sphere of
energetic reasons. The chainlike clusters seem to be wetine chain and the connecting vector to the neighboring

separated. sphere of the other chain is given By /3. This fact ex-
2.5 . 03 T 35 g — 3 T
H ’ . ' I H imain peak ] main peak
pr=0.02 12 [Main peak st Mlag f=r/3 ;
2 in S(k,6=0) 14 - R 12 + 4
11 PX T 1
L2 R L1 -
— = 2 i 1.5 2 25 3 1.5 2 25 3
q - 5 UT* UT*
=) =
w w15 r
17 . S TIRIL D eI
0.5 F-=-
T*#=0,357 T*=0358 7
1 I I 0 1 1 1
0 0 5 10 15 20 0 5 10 15 20
ko ko

FIG. 3. Angular-dependent structure factor for specific values of FIG. 5. Same as Fig. 3, but fgr* =0.2 andT* =0.358. The
0 atp* =0.02 andT* =0.357. The inset shows the maximum of the rightmost inset shows additionally the maximum of the main peak
main peak inS(k,8=0) (located ako,,,~7.0) vs reduced inverse in S(k,#=x/3) vs reduced inverse temperature. The maxima are
temperature. located atko,;,~6.9 (6=0) andko,,,~6.0 (6= 7/3).
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FIG. 6. Angular-dependent pair correlation function for specific ~ FIG. 8. Internal energy Y* = 8U/N) vs reduced density at
values of¢ at p* =0.2 andT* =0.364. The insets show the devel- T*=0.357 in the low-density regime.
opment of the contact value and second peagy(in,,#=0), and

the contact value aj(r 2, 6= 7/3) vs reduced inverse temperature. .ainjike clusters. Nevertheless, in order to get an idea of the
interaction between these clusters, we consider the density

plains the increase af(r,,=o,0=m/3) in Fig. 6 and thus dependence of the mean internal energy per paft&se
the increase of the main peak 8k, 7/3). We note that the

arrangement described here corresponds precisely to the ex- -

pectation for a body-centered-tetragofizat) solid phase, for BU Am 2 f - dr h™2(rpp) (25)
which the unit cell is presented in Fig. 7. The comparison 12 ,

with the bct unit cell also explains the occurrence of the

small positive peak ing(r,,,7/2) atr,~1.30, resulting
from the next-nearest-neighbor chain. However, due to th
small density this structural feature is only weak.

gt the temperaturé* = 0.357 below the top of our instability

line (cf. Fig. 8. We find the internal energy negative on both

sides of the hill, but of different behavior. We relate the
decrease oU*=pB8U/N at very low densities, where the
clusters are expected to be well separated, to the fact that
in the z direction on both sides of the hill in our instability longer and consequently lowers the energy per dipole. At the
line (cf. Fig. 1). While the chains at the low-density side “liquid” side the energy is more negative, but increases with
seem to be well separated, the fluctuations on the liquid sidiecreasing density. This suggests that the long clusters, al-
indicate that the chains already arrange themselves in an ethough arranging themselves in the most favorable way, still
ergetically favorable way, which resembles somewhat theepel each other on the average at the temperatures consid-
structure in a bct crystal. ered here.

The question is whether this scenario corresponds to a We have, nevertheless, directly searched for coexistence
condensatiorof the chains, as it was suggested by simula-by investigation of the chemical potential and the pressure,
tions of Stevens and Gre§29,30 for the closely related for which explicit formulas are given in Appendix B. Coex-
dipolar soft sphere fluid. Clearly, the existence of a condenistence is defined by the requirement that, at fixed tempera-
sation transition requires attractive interactions between theure, the chemical potential and the pressure have to be equal
chains. In the framework of our method, we cannot “look” in the two phases. Investigating the accessible temperature
directly into the chained fluid; we only see the formation of regime, we did not find any densities where the coexistence

conditions are fulfilled: the chemical potential on the high-
density side turned out to be always much larger than at low
densities. However, with the methods used here we cannot
completely rule out a condensation at much lower tempera-
tures, and in fact, the critical point from the simulation of
Stevens and Gre§9] lies far below our instability linécf.

Z Fig. 1). At such low temperatures the chains are expected to
be much longer and even more straight. In this case ¢hay
mutually attract if they arrange as in the bct crystal. But even
then the attraction is very short-rangéd], meaning that the
chains nearly have to have contact. In our opinion, this
makes the condensation transition at the very low densities,

FIG. 7. Unit cell of the polarized body-centered-tetragonal lat-Where Stevens and Grest have foun®f], quite surprising.
tice. At close packing, the spheres of the chains inzlirection We finally show that a coexistence can be found with our
have contact, and the distance between two spheres at the edgesnethods when the dipolar hard spheres interact additionally
(\6/2)c~1.20. The dashed line is the body diagonal of the cell. via an isotropicttractiveLennard-Jones potential, i.e., when
For clearness, the spheres in our picture have a reduced size. the pair potential is given by

2. Condensation?
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FIG. 9. Stability limit (solid line) and some vapor-liquid coex- FIG. 10. Main peak of the structure factor vs reduced inverse

istence pointgblack circle$ of the fully ordered Stockmayer fluid temperature for(from left to righy 6=0,7/3,m/2 at the reduced
with m* = u/\/ea®=2.5, as it comes out from RHNC theorf{  densitiesp* =0.8 andp* =0.9. Forp* =0.8(0.9) the corresponding
=kgTa? 1?). On the gas side, the coexistence points are so clos@/ave numbers arkomq,~7.0(7.0) atd=0, koy,~6.9(6.9) até
to the instability line that the separation cannot be seen here. Alsg 7/3, andko ,~5.9(5.8) atd= m/2.
shown is the critical point due to a GEMC simulatif®] for the
fully ordered Stockmayer fluid am* =2.5 (closed squaje The the so-called optimized RHNC meth@8ll] would be appro-
dashed line is the stability limit in the fully ordered dipolar hard priate. This was beyond the scope of the present work. What
sphere fluid(see Fig. L we want to show with the Stockmayer results in Fig. 9 is that
here the RHNC method yields a true vapor-liquid condensa-
o T < tion. This is consistent with the results from a GEMC simu-
lation by Stevens and Gre4]: they also found vapor-liquid
12 6 . . . . .
gy |9 coexistence in the perfectly aligned Stockmayer fluid with
r12> (r12> m* =2.5. The critical point from this simulatiof®], located
(26)  atT*~0.58 andp? ~0.3, is shown as a black box in Fig. 9.
Comparing the location of the critical point from the simu-
where the dipolar part is given in Eq2). Regarding the lation with our results, one has to note that our aligned
dipole momenju and the diametes as fixed, the strength of Stockmayer model has an additional hard defe Eq. (26)],
the isotropic attraction can be measured by the quantity ~—which was absent in the simulati¢8]. In view of this slight
= ul\Jec®. Apart from the hard core at;,=o, Eq. (26) difference, we regard the quantitative agreement between the
defines the orientationally ordered version of the so-calledRHNC theory and the simulation as satisfactory. This also
Stockmayer fluid. In the true ordered Stockmayer fluidconfirms the reliability of our results for the pure aligned
(which has also been investigated by GEMC simulationglipolar hard sphere fluid.
[9]), the hard core is absent, so that the short-ranged repul-
sion is modeled by a soft repulsive part of the Lennard-Jones C. High densities
interaction. We regard this slight difference from E26) as
unimportant for the phase behavior; the additional hard corg,
in our model simply has the advantage that we can use thgt
same Bridge-function§cf. Eq. (6)] as in the dipolar hard
sphere system.
In Fig. 9 we present our result for the RHNC instability

u(1,2=

Udd(r12)+4€ rp>o0,

We now investigate the ordered dipolar hard sphere sys-
m in the high-density regime, which begins approximately

p*=0.6 (in the right of the short plateau in Fig,).1At

high densities, only fluctuations kt: 0 strongly increase for

T —>TE.

In Fig. 10 we present the temperature dependence of the

. . . )
g?]?l Oftgzem?t/;;eim ?iign;fj tﬁg i??:itfitglqi ;eZdSS.téglfriga erheight of the main peaks of the structure factors for specific
Y, y b y allg Yel\alues ofg (p* =0.8 andp* =0.9). Obviously, the highest

fluid lies at much higher temperatures than that of pure di- : /
polar hard sphere(sja?shed Iinepin Fig. B Due to the higher peaks and the strongest growth of their height occuréfor

3 hl = L 1eign
temperatures, those fluctuations which point to chain forma._ /3 (p*=0.8) andf=m/2 (p*=0.9). This is in contrast

tion in the absence of additional attraction are strongly Weak'EO the low-density regime, where the hl_gh_est peak at nonzero
ave numbers always occurs @&t 0, pointing to the devel-

ened here; the dominant phenomenon on both sides of the o T i
hill is a strong increase of the compressibility. This showsoPment of chains in the direction. Of course, also at high
that the additional attraction forces a condensation of the gagensities the order in thedirection is well developed, as can
before the low temperatures that are necessary for a chalve seen from the sharp oscillations g@fr,,,60=0) at T*
formation are reached. Indeed, investigating again the chemi=0.333 in Fig. 11. We understand the fact that the strongest
cal potential and the pressure, we were able to find somgrowth now occurs foiS(k, 8+ 0) via the physical picture,
coexistence points, which are denoted by black circles in Figwhich we have already used in the discussion of the low-
9. Near the top of the instability line, which represents ourdensity regime: lowering the temperature and/or increasing
estimate for the critical point, the calculation of coexistencethe density, the chains arrange themselves more and more in
points becomes problematic. We expect that, in order to ged structure resembling the bct crystel. Fig. 7). In contrast
more precise values for coexistence points, the application db the low-density region, these “interchain” correlations
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A. Density functional theory

p*=0.8 0208 d | We start from the same approximate density functional

which we have recently employed to investigate the freezing
of isotropic dipolar sphere$19,18. Briefly, the functional
AQ, originally derived for the freezing of the pure hard
sphere systenfb2,53, represents the difference of the grand
canonical potential between the two states considered at
equal chemical potentials:

— 8=0
,,,,, 9=
——- f=

IR S 7 I N -

g(r,,,9)

N0 T#=0.333

(1
pap.)- | dl{psu)ln(u)—mm}

pi(1)

r,/o

FIG. 11. Angular-dependent pair correlation function for spe-

cific values of# at p* =0.8 andT* =0.333. The inset shows the . T .
same ap* =0.8 andT* =0.208. Here, ps(1) andp,(1) are the singlet densities in the solid

and fluid state and p(1)=ps(1)—p;(1). Thesinglet den-

) . _sity of the liquid is given by Eq(3). It is the last term in Eq.
now become dominant. In this sense, the growth of the maim7) which contains the essential approximation of the
peak ofS(k, 7/3) atp* = 0.8 reflects the strong tendency to a theory: assuming thdtn the neighborhood of the transitipn
configuration where a sphere in one chain is displaced in thghe structure of the solid state is close to that of the liquid,
z direction with respect to the next sphere in the neighbothe corresponding excess free energy is expanded around that
chain, so that the angle between the dipole and the conneaf the liquid up to second order in the density. In this way
ing vector isw/3. This requires contact of the two spheres.the direct correlation functioiDCF) c¢(1,2), of the liquid
Correspondingly, the wave numbg&y,,, belonging to the becomes the key ingredient. After minimization with respect
main peak inS(k,/3) is almost the same as in the case to pg(1), thefunctional AQ) is proportional to the pressure
=0, namelyk, o~ 27/ 0. difference between the two states, i.&Q[pS%=—(p®

At the higher densityp* =0.9, the sharp increase of the —p')V, wherep® andp' are the pressures of the solid and
peak in S(k,m/2) suggests that now additionally next- liquid state. Coexistence occurs faiQ)[pS?=0.
nearest-neighbor chains have a strong tendency to order like In order to use the function&R7), a parametrized ansatz
in the bct crystalcf. Fig. 7). The fact that the wave number for the density in the solid state is required. We consider here
Kmax 0= 7/2) is lower than at?=0,7/3 corresponds to the a system with uniform and perfect orientational order. There-
larger distance between two spheres in the plane perpendicfore, the density of the crystap(1), factorizes into a posi-
lar to z. We finally note that upon lowering the temperaturetional contributionps(r)=fdw; ps(1), and ahomogeneous
at p*=0.9, the main peaks of the structure factor grow fororientational part which has the same form as in the liquid
all the directions relevant in the bct crystal, namelg0,  [cf. EQ. (3)]:
0=ml3, and 6= 7/2 (cf. Fig. 10. This indicates that the
system is close to a crystallization into a bct solid. It is in-
teresting, however, that the pair correlation function

g(rq12,0) has at very low temperatures an additional small , .
peak, which is absent at higher temperatures and which is nd€ functionb(cosé) is given by Eq.(3). In order to de-

consistent with the bet structure: this is the pealg{ny,,#  Sctioe the spatial dependencerq(r) in the crystal, we fol-

—0) atry,~1.25 (see inset in Fig. 11 A possible expla- low formgr tregtments .of liquid-solid tranS|t|o_|ﬁ§4,5Fﬂ and
nation for this additional peakwhich is much smaller than parametrize this quantity as a sum of Gaussians around each
the main peak at;,= o) is the fact that, after the bt struc- |2ttice Site:

ture, the energetically most favorable solid structure of

aligned spheres is a polarized fcc crystag]. In a close- po(1)= (vl m) ¥ exi — y(r—R)2]. (29)
packed fcc crystal, the distance between two neighboring R

spheres in the direction of the crystal axes is givenr by
=\20. Therefore, we interpret the additional peak in
g(ri2,6=0) as a hint that if the system goes into ttkess
probable fcc solid structure, the crystal axes will be parallel
to the director.

1
_Ef dlf d2¢(1,2,Ap(1)Ap(2). (27)

1
ps(1)=ps(r) 5 —b(cosH). (29)

The parametely measures the degree of localization of the
particles and is closely related to the so-called Lindemann
parameterf55]. The casey=0 corresponds to a homoge-
neous number density, i.e., to a liquid. This can be seen most
easily from the Fourier representation of the Gaussian ansatz,

i.e., ps(r) =2 psexdikr] with pg = pexd —k4y]. Be-
V. CRYSTALLIZATION sides y, the second parameter in ER9) is the number
Our aim is now to find those densities and temperatures atensity of the crystalps=1/Vfdr p4(r), which determines
which the dipolar hard sphere fluid can coexist with a crystalthe length of the lattice vectoiR.
Both phases are assumed to have perfect orientational order. The minimization with respect tp¢(r) is not a free mini-
In the following, we outline at first the corresponding densitymization in the sense thak) its shape is fixed by Eq29),
functional theory. The results are presented in Sec. IV B. and (i) also the symmetry of the lattice vectors, i.e., the
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CryStal structure, has to be chosen. What kind of lattice StrUCﬁxed |engthk Since this sum vanishes in the fcc CaSQJS
tures can be eXpeCtedo In view of the grOUnd -State CalCUla:Tonzero on|y for the less Symmetnc bct lattice.
tions for fully oriented spher¢21] and in view of the struc- Finally, the contributions of the DCF coefficients with
tural features in the dense ||C]U((Itf Sec. Il O, the most =0 andl=4 are contained in the quant|t|e$ which are
obvious candidate at loW* is the body-centered-tetragonal given by
(bct) crystal: chains in the direction where nearest- neighbor
chains are displaced vertically by half a particle diameter.
However, at low coupling strengtitarge T*) we expect the ups,y)=2> ( > Pl(coseR))
dipolar interactions, favoring the bct lattice, to be dominated R\ shellR
by the purely repulsive interactions of the hard spheres. w ,
Since the pure hard sphere solid has a fcc strudgg we X f drypr,e "2 RICl (1)
can therefore expect to observe at sufficiently higha fcc 0
solid. We note that the high-temperature fcc solid will still be 1
polarized, due to our assumption of perfect orientational or- xf d cosf’ e’ 1R COS"'P|(cos¢9’). (32
der. In view of these expectations, we will investigate both a -
polarized bct and a polarized fcc solid. A further reason to
investigate both lattices is that the energetic differences b
tween these structures are snj&i?].

Inserting the ansatz for the solid dendity. Eqgs.(28) and
(29)], the ansatz for the liquid densit®), and the expansion
(7) for the DCF into the density functioné27), one gets an

Fere, 6 is the angle betweeR andz, while 6’ is the angle
betweenR and the connecting vectar,. Concerning the
real space lattice sums in the large parentheses, one has to
note that these sums dependfer4 on the orientation of the

explicit expression for the difference in the grand canonica att!ce relative to the directorz]. In t_he case of the bet
potential, BAQ/V, depending on the parameteFsp,, p attice, we assume that the shorter side of the unit @Il

) Sy
andy (and on the lattice structureThe technical details are Fig. 7), i.e., the chain direction, is parallel @ as one ex-
mostly in formal analogy to the case of tieotropic fluid. ~ Pects due to energetic reasons. In the polarized fcc lattice the

Therefore, we refer to Ref§18,19. The final result is situation is less clear, since taipolar part of th¢ energy of
this crystal only depends on the absolute value of the polar-

BAQ 3 ization (and thus on the densijtyThis can be seen from the
———sold— , —[In(y/m)—1]—pgIn p;— (ps—py) Lorentz formula[57], which expresses the local field exerted
4 2 on a dipole in a lattice by a sum of continuum contributions
Ps~ 1 (proportional to?) and the field produced by the neighbor
uz(ps,y) Y\/ 5 ps>, U(ps,y) particles within a large sphere around this point. For a ho-
mogeneously polarized fcc lattice, as considered here, the
1 20 field of the neighborsalwaysvanishes, independent of the
— =C'7%k=0)(pf—2pips) — = B(Ps—P))?, orientation of the director relative to the lattif£7]. Now it
2 3 has to be noted that the important quantity in our density
(30 functional calculation is not the electrostatic interaction en-
ergy but the “effective energy” represented by the last term
where P,=psu and P,=p, are the polarization values in i EQ.(27), which contains the DCF. This term can favor a
the solid and the liquid. The polarization term stems from arparticular orientation of the fcc lattice relative 10As sug-
integral of the form p%/2V) [dr,fdr,c'=%(r,,), where it has  gested by the result for the lattice sum over the fourth-order
to be noted that the long-ranged part of the integrand is ed-egendre polynomiaP, [17], we allow here for two pos-
sentially the dipolar interaction itseléf. Eq. (22)]. We have  sible orientations:P|(100) (polarization along one of the
evaluated the integral for a geometry without a depolarizaaxes of the cubic celland P||(111) (polarization along one
tion field (cf. Appendix A. Physically, the polarization term of the space diagonalswWhich structure “wins” has to be
in Eq. (30) reflects that a density jump from the liquid to the decided during the numerical minimization. Since we have
solid leads to a lowering of the macroscopic energy densitjound that already thé=4 term is always very small, we
—1P-E with E=(4w/3)P. have neglected the higher terms with6 andl =8
While the polarization term stems from the long-ranged
part ofc' =2(r,), its short-ranged contributions are contained
in U,(ps,y). We evaluate this quantity using the Fourier . ) . .
representation of the density, which leads to The points where the allgneq dipolar hard sphere fluid can
coexist with one of the crystalline phases can now be found
by minimizing the corresponding density functionals. For
Us(ps,y)= >, ( 2 Pz(cosek)) —kZ/ZVE':Z(k), this, we minimizeBAQ/V at fixed p;, T and fixed lattice
k>0 structure(fcc or bey with respect tqpg and y, and search for
3D those temperatures wheteQ)[ p<9=0. This directly gives
the coexistence number densities and the coexistence tem-
The angled, describes the orientation of a reciprocal- |attlceperatures In Fig. 12 we present the resulting part of the
vector k relative to the dlrectorz() The sum in the large phase diagram. The calculated coexistence points are con-
parentheses is a sum over reciprocal-lattice vectors witlmected by the thick black coexistence lines.

B. Coexistence results for crystallization
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FIG. 12. Phase diagram of fully aligned dipolar hard spheres i
the temperature-density pland*(=kgTo®/u2, p* =po?). The

thick solid lines are freezing coexistence lines. At low coupling
strength(high T*), the only stable solid phase has a fcc structure
where the polarization points along one of the crystal axes,_S

(P|l{100)). Below the triple temperatur€ ~0.42, a bct phase ap-
pears. The dashed lines are density functional regL®&49 for the
temperatures and densities whereiswtropic fluid freezes into a
ferroelectric solid[19] (dashed ling and where thegmetastable
transition to a ferroelectric fluid occuf43] (dot-dashed ling The
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fcc lattice occur. The coexistence lines of this first-order
transition were found by searching for thdsguid densities
and those temperatures for which the minimization gives
both a bct and a fcc state withQ*%Y V= A0 V<0. Since
AQSYy=—(pS—pl), this actually means that there are
three states with the same chemical poteritiamely that of
the liquid). The two solid states have the same presgire
higher than that of the liquid. Therefore, the above condition
indeed characterizes bct-fcc coexistence.

It is visible from Fig. 12 that the liquid branch of the
coexistence liquid/bct strongly flattens below the triple point,
and that it ends gp* =0.6. Below this density the minimi-
zation of the density functionals and therefore the calculation

nof coexistence points fail. We suspect that here the density
difference between the coexisting liquid and the polarized
bct crystal becomes so large that the concept of our method,
namely the description of the solid free energy with liquid

tate correlation functions, cannot work any more. The end-
ing of the freezing line is unfortunate insofar as the knowl-

edge of its continuation could also show the low-density be-
havior in a new light: the flattening of the freezing line

suggests that the crystallization into the bct crystal occurs
already at very low densities, where the system is character-

black circles denote the stability limit of the liquid phase calculatedized by the formation ofseparatedchains in thez direction

by RHNC integral equation&ee Fig. 1 The black box marks the
GEMC simulation resulf29] for the critical point of aligned dipolar
soft spheres.

(cf. Sec. Il B. This could even preempt the “vapor-liquid”
condensation of the chains, which was seen in the simulation
of Stevens and Gre$29,3( (in this simulation, the possi-
bility of a crystallization was not consideredHowever, in

Apparently, both of the solid phases which we have conye tramework of our investigation this remains a conjecture.

sidered herdbct and fcg are stable in certain parts of the

We finally compare our results for the crystallization of

phase diagram. The fcc crystal appears at high temperaturgse iy ordered dipolar hard sphere liquid with isetropic
and densities and also at low temperatures and extremely, nterpart, the freezing of which we have investigated in

high densities. Its occurrence at high temperatures can hg

explained by the fact that high* =kgTo3/ u? correspond to

ef. [19]. There we minimized, in formal analogy to the
present paper, a density functional which is based on the

low dipolar coupling strengths, meaning that the system IfycE of the isotropic liquid. According to our resuli$9],

dominated by the pure hard sphere repulsion. The highg,

e isotropic liquid freezes at high densities and not too high

temperature fcc solid is still polarized, since we have asiemperatures into polarizedcrystal, which has at very low
sumed the orientational degrees of freedom to be zero. Coamperatures a bct structure. The freezing points of the iso-
cerning the low-temperature regime, the stability of the fcctropic liquid are marked by the dashed line in Fig. 12. The

solid might be surprising, since the bct crystal Hasfixed

unfilled box on this line shows the density and temperature,

density the lower energy22]. However, the bct crystal can- below (above which the coexisting crystal has a btc)
not be packed as densely as the fcc crystal, which explaingcture.

the stability of the latter at extremely high densitiéke
maximum densities of the two crystals g, p.=4/3 and

p:cnax,fcc= \/E) . . . .
In the whole stability regime of the fcc solid, the numeri-

Comparing now this freezing line with that of the fully
aligned liquid(thick black ling, one immediately sees that,
at fixed density, the ordered liquid freezes at much lower
temperatures. Vice versa, at a fixed temperature the ordered

cal minimization of the density functional shows that theliquid freezes at considerably higher densities. This is con-

preferred orientation of the lattice relative to the direct)r (
is given byP||(100), i.e. polarization along one of the axes of
the cubic cell. As explained in the preceding sectibhA ),

sistent with the corresponding pressure-temperature diagram,
which we present in Fig. 13: at fixed temperat(pesssurg
the ordered liquid freezes at a higher pressioaer tem-

this preference cannot be traced back directly to a loweringerature.

of the electrostatic energy in the crystal, but only to a low-

ering of the “effective” energy, expressed by the DCF in
Eq. (27). Since the DCF is the second functior{density

From a physical viewpoint, we understand this result by
the different arrangement of the spheres in the two dense
liquids: in the ordered liquid, the spheres tend to form chains

derivative of the free energy and therefore also contains colin thez direction where two neighboring chains are displaced
relational entropy, we understand our result as an indicatiocf. Sec. Ill Q. This arrangement of the spheres, which re-

that this entropy is higher fdP|{100) than forP||(111).
Below the triple temperatur&; ~0.422, the ordered lig-

sembles the bct solid occurring at higher densities, has two
stabilizing effects. First, the solidlike ordering reduces the

uid does not freeze directly into the fcc solid, but into thedisorder in the underlying hard sphere system. In a dense
energetically more favorable bct solid. Only at extremelypure hard sphere liquid, it is precisely this disorder which
high densities does the expected transition from the bct to thieads to the transition into a solid state, where, due to the
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, . liquid that leads to the earlier breakdown of the liquid phase
15 ] when increasing the pressure at a constant temperature, or
lowering the temperature at constant pressure.

Both the density-temperature and pressure-temperature
diagram(cf. Figs. 12 and 1Bsuggest that the presence of
orientational order in the liquid phase chimderthe crystal-

125
polarized solid

10 ¢

B s lization in a certain part of the parameter space. This is also
an important point concerning the existence ofpontane-
5t ously polarized liquicbhase: various simulationd—7] agree
25 that such a phase is indeed stable relative to a polarized
crystal in a small part of the phase diagram. Even density
0 : functional theory in the form used here yields a transition
0.25 0.5 0.75 1 1.25 1.5

T* from the isotropic into a polarized liquid, when one restricts
the minimization to homogeneous states drlg,13. How-

FIG. 13. Freezing of the perfectly orderésblid line) and the  ever, the resulting transition line isotropic/polarized liquid
isotropic[19] (dashed lingdipolar hard sphere fluid in the pressure- (dot-dashed line in Fig. 22ies below the freezing line of the
temperature plane pt =po®/u?, T*=kgTo®/u?). The closed isotropic liquid, which means that the polarized liquid is a
squares denote the corresponding triple points liquid/bct/fcc. metastable phadd9]. This is in contradiction to simulations
[4-7]. The present work, where we consider the perfectly
Iz;&ligned system, cannot contribute directly to the question of

larger free volume of a sphere, the entropy is higher than i e R .
the liquid. The second effect of the bct-like ordering in thef[he stability of aspontaneously polarizeiéjuid phase in the

. A . ; ._“isotropic dipolar fluid. What becomes clear here is the strong
dense oriented liquid is that by this the energetic rEpUIS'anuantitative influence of the characteymmetry of the lig-

which one would expect _in a SYSt‘?m of parallel c_hpol_es, 'Syid correlation functions on the density functional results for
strongly reduced already in the liquid phase. Considering th e crystallization, and that using the DCF of the ordered

system at a fixed temperature, one has to exert a relatively,ig jeads to a widening of the stability regime of the liquid

high pressure, until the loss of entropy, resulting from theynase. It is somewhat disappointing that the freezing line of
localization of the spheres in the crystal, is dominated by thgne ordered liquid lies stilabovethe density functional re-
lowering of the energy. sults[13] for the transition line isotropic/polarized liquigf.

In the isotropic fluid, the structure is very different: Fig. 12. One possible reason might be the structure of the
though there is a tendency to a parallel ordering of the didensity functionalcf. Eq. (27)] itself: as known from the
poles[13], it is plausible that, due to the lack of a global study of systems with repulsive spherical interactions of dif-
director, the spheres disturb themselves much more and caferent ranges, this type of theory, based on a second-order
not arrange so favorably as in the ordered liquid. This isdensity expansion of the excess free end®i, has prob-
guantitatively expressed in Table I, which contains somdems predicting freezing into non-close-packed structures
thermodynamic quantities for an isotropic and an ordered58,59. This suggests that at loW*, where our results pre-
liquid at an exemplary density and temperature. One can seadict a bct solid, the change of entropy due to crystallization
that the isotropic liquid has a considerably higher pressure, B not treated correctly. For spherically interacting systems,
lower compressibility, and a much higher chemical potentialweighted-densityWD) theories of freezing60—62, which
than the perfectly aligned liquid. The total free energy isavoid the density expansion, seem to improve the results
smaller in the isotropic case. The reason is the larger value ¢69]. However, direct application of these theories to more
“ideal entropy,” stemming from the orientational degrees of complicated interactions is rather involved. Cuft@3] et al.
freedom(cf. Appendix B. The excess free energy, on the have proposed a free energy functional which combines a
other side, is higher in the isotropic liquid, reflecting againWD functional for the short-ranged repulsion and the
the stronger mutual disturbance of the particles. We suspesecond-order theory for the “pertubation” part of the inter-
that it is this disturbance of the particles in the isotropicaction. In an attempt to apply this functiong83] to the

TABLE I. Comparison of some thermodynamic quantities of fully aligned dipolar hard spheres and
isotropic dipolar hard spheres@t=0.8 and 1T* =3.0 (T* =0.333). The quantities for the ordered system
are calculated via Eq24) for the compressibility, Eq¥B3) and(B4) for the excess free energincluding
the hard sphere contributiprEq. (B1) for the total free energy, E4B5) for the chemical potential, and Egs.

(B6) and(B7) for the pressure. For the isotropic system, the corresponding formulas can be found in Refs.

[51,66.
Isotropic system Ordered system
Compressibility Bx+t/p) 0.0463 0.0547
Pressure o/ u?) 1.325 0.866
Chem. potential 8u) 1.290 0.203
Excess free energyBF*/N) 0.077 —1.820

Total free energy 8F/N) —-3.677 —3.043
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present problem, we found that the free energy of the solideady reflects well defined positions of the chains relative to
has the wrong bending at high densities, making the applicaeach other, similar to what one finds in a solid with body-
tion of the Maxwell construction and therefore a comparisoncentered-tetragonalbct) structure. The formation of this
with the coexistence results from the functio@¥) impos-  crystal structure is also indicated by the strongly increasing
sible. periodic fluctuations which occur at the stability limit of the
A more physical explanation for the too high position of liquid phase. Minimizing a density functional of the grand
our freezing line in Fig. 12 is our assumption pérfect —canonical free energy which is based on the liquid correla-
orientational order: some disorder in the orientational struclion functions, we calculate the coexistence lines at freezing.
ture (which can be expected in a spontaneously ordered "desides the bct solid, into which the system freezes at very

uid) might lead to a lowering of the free energy due to theIOW temperatures, we find a triple point, above which the

additional entropy from the orientational degrees of freedoml.'qu'd coexists with gpolarized fcc structure. The compari-

If this additional orientational entropy is higher in the liquid son of the frge_zmg I|n_e of the perfectly ordered dipolar liquid
than in the solid, one can expect that the freezing line isWIth that O].c 1ts Isotropic cour_1terpa[r_19]lshovys that the pres-
. ence of orientational order in the liquid camderthe crys-
moved towards still lower temperatures. tallization in a certain part of the parameter space: due to the
presence of a global director, the dipolar spheres can arrange

V. CONCLUSION themselves much more favorably than in an isotropic liquid.

In the present work, we have analyzed the phase behavior
of perfectly aligned dipolar hard spheres by application of APPENDIX A: COMPRESSIBILITY

the RHNC integral equation method on the fluid phase of ) o )
this system. In order to get a first idea, we have applied a The isothermal compressibility describes the response of

stability analysis of the homogeneous state. This allowed udhe system to homogeneous fluctuations of the number den-
on one hand, to interpret the line of points in the Sity,i.€.,6p(1)=38p (1/2m)b(cos6) with b(cose) from Eq.
temperature-density diagram, below which the RHNC equal3)- Inserting this[together with the expressiof8) for the
tions fail to have a solution, as an estimate for the stability“ndisturbed densiyin Eq. (16), we find that the system is
limit of the homogeneous fluid phase: approaching this linestable against those number density fluctuations if

from the high-temperature side, various density fluctuations

strongly increase. Furthermore, a careful investigation of the 1 _
“diverging” fluctuations enabled us to make some predic- 1_P§J drlf dryc(ryp)=:
tions concerning the structure at very low temperatures. At

low densities, the fluctuations point to the formation of.

chains along the director, where the spheres in the chai Igepzﬂg\rls. \gvlennoorxvi;ggfang th(e7)c]j|;encé (;(())rrzgilggcr)r;;ug(;g?er: n
have contact. This prediction is consistent with simulation 9 poly - =4 P y

results for the closely related aligned dipolar soft sphere quia§ iaecrnstcc-:;r:rg(lrn :)hgnr;j‘i'ﬂ(”rg ;;TeO;HQ:E?;?'Séds;ﬂzititggsioem_
[29]: there it was directly observed that at very low densities L 1 9 i

and temperatures nearly all spheres are associated inE)q'.(.zm’ the integral overs; does not depend on, in
chains. The simulatiofi29] furthermore suggests the exis- sufficiently large systems. This allows us to evaluate the cor-

tence of a condensation transition from the dilute “chain"€SPONding integrals by the substitution Y)/dr,/dr,
vapor” into a somewhat denser “chain liquid.” This could —Jdra,. Noting that fd costh,Pi(costy) =(2/2+1)

not be directly checked here: with our method, we cannot’jlnd Eq.(14), the right-hand side in EdAL) becomes
look directly into the associated system; we only see the

onset of the chain formation via the stability limit of the p

homogeneous phase. Having this in mind, it is not surprisingl_ ]_/f drlf drpc(rio)

that the critical point found in Ref.29] lies far below our

instability line. We have, nevertheless, directly searched for

-1
(A1)

B
;XT

coexistence by investigating the pressure and the chemical =1-pc'~%k=0)

potential, for which we gave explicit formulas. In the tem- 1

perature regime considered here, no coexistence was found. —p—f dflJ dr,c'=?(r 1) Po(cosb). (A2)
This confirms that the condensation, if it exists, must indeed 4

occur at very low temperatures.

It is plausible that the presence of an additional isotropicThe coefficientc'=2(r,,) has a special role: its long-ranged
attraction between the aligned spheres makes a usual vapdrehavior[cf. Eq. (22)] shows that the last integral in Eq.
liquid condensation much more probable. Indeed, investigattA2) is essentially an integral over the potential energy of the
ing a modified version of the so-callédligned Stockmayer dipole atr; in the field of all the other dipoles. Using
fluid, we found that its stability limit is located at much Gauss’s law, the integral can be evaluated for some particu-
higher temperatures than in the pure dipolar hard spheriar shapes of theuter boundary of the systerf64]. We
fluid. Furthermore, the RHNC method here indeed revealshoose here a geometry for which the contribution of the
condensation and allows us to calculate some coexistenaauter boundary, which corresponds to tbepolarization
points. The numerical results are in fair agreement withfield, vanishes, so that only the Lorentzian field results: a
simulation data for the fully oriented Stockmayer fli@]. needlelike volume where the long axis is parallel to the po-

At higher densities the structure of the liquid phase al-larization of the system. This is the only reasonable assump-
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tion, since otherwise the macroscopic homogeneous polafate the\ integralwithouta further approximation. Special-
ization would be destroyed by domain formation. Thejzing these calculations to the case of the perfectly ordered

resulting expression is dipolar fluid, we get
P ~_ 4 ex . I max | 2
1-8[ dr [ drpctr=1-8 k-0 - Topur. 4EF —p [Cariar] 3 T2 ey e
N 0 & 21+1
(A3)
This can be transformed further by using E23), yielding + iszdk R[S =0(k) —cHS(k) ]
4mcJo
p
1——f drlf dryc(rqy) 1 (= 1
v +——| dkK f dxIn| 1
8m2Jo -1
~ 1 _ o~
=1—p(C|_0(k=0)—Ecl_z(k=0))=l—p lim (k) e
ok “r2 E'(k)Pl(X)> } -2 In[l—p?:“%k)]}

-1
= S(k=0,0= f” , (A4)
{ ’ P [E0(k=0)~TSk=0)] - 1 pBu?,

which coincides with Eq(24).

(B4)
APPENDIX B: EXPLICIT FORM wherex=cos§. The last term in Eq(B4) arises from an
FOR THERMODYNAMIC QUANTITIES integral of the form p/2V) fdr,fdr,c'=2(r,,) (cf. Appen-

dix A). It can be interpreted physically as the macroscopic

In this appendix we give the explicit expressions for the%nergy density in a polarized system in which the depolar-
free energy, the chemical potential, and the pressure of th ation field vanishes. That is: (277/3)p2u? is the same as

completely ordered system. The free energy can be written dé . o
—ZP-E, where P=puz is the polarization andE

BF BFP BFE  BE =(4w/3)P is the Lorentzian field. _

NN + N + N Based on Eqgs(B2), (B3), and(B4), the chemical poten-
tial follows from a differentiation with respect to the density,
i.e., u=(1N)dF/dp|r. Again we make use of previous
results[66] and evaluate the required differentiations of the

with

BF 1 (1 au(1,2) correlation functions iBBAF®YN with the help of the RHNC
A N :EJ d)\f le d2p(1) p(2)g(1,2\)B a)\’ closure(5). This yields
AR
(Bl) 8n—9 2 3
n—97°+37
_ , _ , ﬂM:mP‘Fﬁ‘FABMeX
The first term on the right-hand of E(B1) is the ideal part (1-7)
of the free energy. Omitting the contribution of the thermal
de Broglie wavelength, the ideal term is given by with
i I max | 2
BF B ” 2 [h(rd]® s )
T=In p—l. (BZ) Aﬁﬂex_pzw 0 dr12r12 = 21+1 [h (r12)]
Imax
We note that the ideal free energy of the corresponding iso- . 27-rfxdr 2 2 h'(rypc'(rqp)
tropic fluid contains an additionahegative contribution, P P e 21+1
namely BF'Y/N|is,=In p—1—In 47, where In 47 reflects the
additional entropy due to the freely rotating dipoles. The - - ~1—0 ~us
next term in Eq(B1) is the excess free energy of the refer- —h™(ryp)c™(ryy) | —plc ™ (k=0)—c™(k=0)]
ence system, namely the pure hard sphere system. For this
we use the Carnahan-Starling form{iG5] A

—?pﬂﬂz—pzhf dryprifh'=0r 1)
BFR' BFis 4n—37%° i
NN e

_ T 0l B3
e &9 —h“s(nz)]%BHS(rlz). (B5)

The last term in Eq.(B1) contains an integral over the
strength of the interactior\ is the interaction strength be-
longing to the pure hard sphere system, amdl belongs to 2n(2— )
the full interaction. As shown previously for isotropic sys- Bp=p+p T A ppex (B6)
tems[51,66, the RHNC approximation allows us to calcu- (1-7)3

Finally, the pressure is given by
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For the dipolar contributiorBAp®*, we use a Gibbs-Duhem respect to the volume. Due to the last term in E8p), the
relation two resulting expressions for the pressure do not coincide,
which represents one of the thermodynamic inconsistencies
of the RHNC equatiof51]. The described inconsistency can

ABPT=pABuT—pA N (B7) " pe removed byqvaryirIPg t%e density of the hard sphere)s/ in the

reference systenoptimized RHNQ [51]. These additional

Alternatively, A Bp®* pressure can also be calculated directlyconsistency cycles have not been carried out in the present
via a differentiation of the free enerdygf. Eq. (B4)] with  work; for the pressure we used E®7).
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